Skip to main content

Imaging Modalities in Brain Tumors

  • Chapter
  • First Online:
Imaging of Brain Tumors with Histological Correlations

Abstract

Imaging plays an important role in the evaluation of patients with brain tumors. CT and MRI represent the two most important and commonly used imaging modalities. They have a significant impact on patient care. The technical improvement of CT and MRI, the utility of contrast material in the imaging of brain tumors as well as the introduction of new imaging techniques, improved significantly the detection and the evaluation of brain neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213:141–149

    Article  CAS  PubMed  Google Scholar 

  2. Whelan HT, Clanton JA, Wilson RE et al (1988) Comparison of CT and MRI brain tumor imaging using a canine glioma model. Pediatr Neurol 4(5):279–283

    Article  CAS  PubMed  Google Scholar 

  3. Runge VM, Kirsch JE, Burke VJ et al (1992) High dose gadoteridol in MR imaging of intracranial neoplasm. J Magn Reson Imaging 2:9–18

    Article  CAS  PubMed  Google Scholar 

  4. Yoursy I, Camelio S, Schmid UD et al (2000) Visualization of cranial nerves I-XII: value of 3D CISS and T2 –weighted FSE sequences. Eur Radiol 10(7):1061–1067

    Article  Google Scholar 

  5. Yuh WT, Fisher DJ, Engelken JD et al (1991) MR evaluation of CNS tumors: dose comparison study with gadopentate dimeglumine and gatoteridol. Radiology 180:485–491

    Article  CAS  PubMed  Google Scholar 

  6. Yuh WT, Fisher DJ, Runge et al (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR Am J Neuroradiol 15:1037–1051

    CAS  PubMed  Google Scholar 

  7. Yuh WT, Nguyen HD, Tali ET et al (1994) Delineation of gliomas with various doses of MR contrast material. AJNR Am J Neuroradiol 15:983–989

    CAS  PubMed  Google Scholar 

  8. Abdulach ND, Mathews VP (1999) Contrast issues in brain tumor imaging. Neuroim Clin North Am 9(4):733–749

    Google Scholar 

  9. Van Dijk P, Sijens PE, Schmitz PIM et al (1997) Gd-enhanced MR imaging of brain metastases: contrast as a function of dose and lesion size. Magn Reson Imaging 15:535–541

    Article  PubMed  Google Scholar 

  10. Knauth M, Forsting M, Hartmann M (1996) MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer. AJNR Am J Neuroradiol 17:1853–1859

    CAS  PubMed  Google Scholar 

  11. Kurki T, Niemi P, Valtonen S (1995) Tissue characterization of intracranial tumors: the value of magnetization transfer and conventional MRI. Neuroradiology 37:515–521

    Article  CAS  PubMed  Google Scholar 

  12. Olson EM, Healy JF, Wong WHM et al (1994) MR detection of white matter disease of the brain in patients with HIV infection: fast spin-echo vs conventional spin-echo pulse sequences. AJNR Am J Neuroradiol 162:1199–1204

    CAS  Google Scholar 

  13. Essig M, Schlemmer HP, Tronnier V et al (2001) Fluid-attenuated inversion recovery MR imaging of gliomatosis cerebri. Eur Radiol 11:303–308

    Article  CAS  PubMed  Google Scholar 

  14. Tsuchiya K, Mizutani Y, Hachiya J (1996) Preliminary evaluation of fluid-attenuated inversion-recovery MR in the diagnosis of intracranial tumors. AJNR Am J Neuroradiol 17:1081–1086

    CAS  PubMed  Google Scholar 

  15. Essig M, Knopp MV, Schoenberg SO et al (1999) Cerebral gliomas and metastases: assesment with contrast-enhanced fast fluid-attenuated inversion-recovery-imaging. Radiology 210:551–557

    Article  CAS  PubMed  Google Scholar 

  16. Westbrook C, Kaut C (1993) Image weighting and contrast. In: Westbrook C (ed) MRI in practise. Blackwell Scientific Publications, pp 17–46

    Google Scholar 

  17. Fellner F, Fellner C, Held P et al (1997) Comparison of spin-echo MR pulse sequences for imaging of the brain. AJNR Am J Neuroradiol 18:1617–1625

    CAS  PubMed  Google Scholar 

  18. Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. AJR Am J Roentgenol 174:1147–1157

    Article  CAS  PubMed  Google Scholar 

  19. Edelman RR, Wiclopolski P, Schmitt F (1994) Echo-planar MR. Radiology 192:600–612

    Article  CAS  PubMed  Google Scholar 

  20. Patel MR, Siewert B, Klufas R et al (1999) Echo planar MR imaging for Ultrafast detection of brain lesions. AJR Am J Roentgenol 173:479–485

    Article  CAS  PubMed  Google Scholar 

  21. Sievert B, Patel MR, Mueller MF et al (1995) Brain lesions in patients with multiple sclerosis: detection with echo-planar imaging. Radiology 196:765–777

    Article  Google Scholar 

  22. Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    Article  CAS  PubMed  Google Scholar 

  23. Nelson SJ, Nat D (1999) Imaging of brain tumors. Neuroimaging Clin N Am 9(4):801–819

    CAS  PubMed  Google Scholar 

  24. Okamoto K, Ito J, Ishikawa K et al (2000) Diffusion-weighted echo-planar imaging in the differential diagnosis of brain tumors and tumor-like conditions. Eur Radiol 10(8):1342–1350

    Article  CAS  PubMed  Google Scholar 

  25. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighed MRI with echo planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60

    Article  CAS  PubMed  Google Scholar 

  26. Filippi CG, Edgar MA, Ulu AM et al (2001) Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol 22:65–72

    CAS  PubMed  Google Scholar 

  27. Kim YJ, Chang KH, Song IC et al (1998) Brain abscess and necrotic or cystic brain tumor discrimination with signal intensity on diffusion-weighted MR imaging. AJR Am J Roentgenol 171:1487–1490

    Article  CAS  PubMed  Google Scholar 

  28. Tsuruda JS, Chew WM, Moseley ME et al (1990) Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors Am J Neuroradiol 11:925–931

    CAS  Google Scholar 

  29. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  30. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405

    Article  CAS  PubMed  Google Scholar 

  31. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-­diffusion-tensor MRI. J Magn Reson B 111(3):209–219

    Article  CAS  PubMed  Google Scholar 

  32. Maier SE, Mamata H (2008) Diffusion Imaging of Brain Tumors. In: Newton EB, Jolesz FA (eds) Handbook of neurooncology neuroimaging. Academic Press, Elsevier, pp 239–247

    Chapter  Google Scholar 

  33. Celso Hygino Cruz L Jr, Domingues RC, Sorensen AG (2008) Diffusion Magnetic Resonance Imaging in Brain Tumors. In: Newton EB, Jolesz FA (eds) Handbook of neurooncology neuroimaging. Academic Press, Elsevier, pp 215–238

    Google Scholar 

  34. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  CAS  PubMed  Google Scholar 

  35. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1):77–94

    Article  PubMed  Google Scholar 

  36. Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999) Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  37. Baird AE, Benfield A, Schlaug G et al (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 41:581–589

    Article  CAS  PubMed  Google Scholar 

  38. Demaerel PH (ed) (2000) Recent advances in diagnostic neuroradiology. Springer Verlag, Berlin, pp 119–135

    Google Scholar 

  39. Aromen JH, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    Article  Google Scholar 

  40. Roberts HC, Roberts TPL, Brasch RC et al (2000) Quantitavive measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    CAS  PubMed  Google Scholar 

  41. Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    CAS  PubMed  Google Scholar 

  42. Miszkiel KA, Waldan AD (2000) Imaging in AIDS. In: Demaerel PH (ed) Recent advances in neuroradiology. Springer-Verlag, pp 249–273

    Google Scholar 

  43. Ernst TM, Chang L, Witt MD et al (1998) Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 208:663–669

    Article  CAS  PubMed  Google Scholar 

  44. Sugahara T, Korogi Y, Shigematsu Y et al (1999) Perfusion sensitive MRI of cerebral lymphomas:a preliminary report. J Comput Assist Tomogr 23(2):232–237

    Article  CAS  PubMed  Google Scholar 

  45. Sunaert S, Dymarkowski S, Van Oostende S et al (1998) Functional magnetic resonance imaging (fMRI) visualizes the brain at work. Acta Neurol Belg 98:8–16

    Article  CAS  PubMed  Google Scholar 

  46. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 29:5675–5679

    Article  Google Scholar 

  47. Mueller WM, Yetkin FZ, Hammeke TA et al (1996) Functional MRI mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39:515–520

    CAS  PubMed  Google Scholar 

  48. Schreiber A, Hubbe U, Ziyeh S et al (2000) The influence of gliomas and non-glial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21:1055–1063

    CAS  PubMed  Google Scholar 

  49. Shuber M, Maldjian JA, Liu WC et al (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89:412–448

    Article  Google Scholar 

  50. Wilms G, Sunaert S, Flamen P (2000) Recent developments in brain tumor diagnosis. In: Demaerel PH (ed) Recent advances in diagnostic neuroradiology. Springer Verlag, Berlin, pp 119–135

    Google Scholar 

  51. Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, Junck L (2005) Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 185(6):1471–1476

    Article  PubMed  Google Scholar 

  52. Lichy MP, Bachert P, Henze M, Lichy CM, Debus J, Schlemmer HP (2004) Monitoring individual response to brain-tumour chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy. Neuroradiology 46(2):126–129

    Article  CAS  PubMed  Google Scholar 

  53. Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Wilkins P, Opstad KS, Doyle VL, McLean MA, Bell BA, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    Article  CAS  PubMed  Google Scholar 

  54. Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–378

    Article  CAS  PubMed  Google Scholar 

  55. Wang R, Wedeen VJ (2007) ISMRM abstract. Proc Intl Soc Mag Reson Med 15:3720

    Google Scholar 

  56. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Drevelegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drevelegas, A., Papanikolaou, N. (2011). Imaging Modalities in Brain Tumors. In: Drevelegas, A. (eds) Imaging of Brain Tumors with Histological Correlations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87650-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87650-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87648-9

  • Online ISBN: 978-3-540-87650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics