Skip to main content

Scintigraphy for Brain Tumors

  • Chapter
  • First Online:
  • 2077 Accesses

Abstract

Parmenides said that what cannot be thought, cannot be, therefore, what can be, can be thought. So it was that ancient Greek philosophers had thought of the atoms, and particularly, the radioactive atoms we use in Nuclear Medicine. Indeed, Democritos in the sixth century bc formulated the idea of the atoms as the indestructible smaller elements of the universe that combine among themselves to form the visible world; he thought of atoms on a philosophical basis as the explanation of the changes in the environment, which occur without the perishment of matter. Rearrangements of “atoms” could explain the changes around us and inside us. Two centuries later, Epicuros, as if anticipating the discovery of the radioactive atoms, introduced the idea of the “unstable” atom, which, after a period of instability, takes its final stable form. More than 2,000 years later, when science overtook these frontiers, John Dalton knew Democritos’ Atomic Theory of Matter and used it to explain chemical experiments. If the atom (=not possible to cut) can be cut and split into parts, it is not Democritos’ fault. Today we understand that by “atoms” Democritos actually meant the “quarks” or the “strings,” or perhaps some other, yet to be discovered, elemental particles. As for Henri Beckerel and Marie Curie, who were among the first to deal with radioactivity and the “unstable” or “radioactive atoms,” it is not known if they knew that the theoretical father of Nuclear Science was Epicuros. In Nuclear Medicine, we use the “radioactive atoms,” which are the “atoms” meant by Democritos (as applied by Dalton), in their unstable form, which was anticipated by Epicuros, for imaging of tissues or diseases and for therapy of malignant or benign diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sfakianakis GN, Mallin W (1999) Scintigraphic neuroimaging in paediatrics. In: Panteliadis CP, Darris BT (eds) Encyclopedia of pediatric neurology theory and practice, Thessaloniki, Greece. 2nd edn:pp 164–195

    Google Scholar 

  2. Hustinx R, Alavi A (1999) SPECT and PET imaging of brain tumors. Neuroimaging Clin N Am 9(4):751–766

    CAS  PubMed  Google Scholar 

  3. Alavi JB et al (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6):1074–1078

    CAS  PubMed  Google Scholar 

  4. Del Sole A et al (2001) Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 28(12):1851–1872

    PubMed  Google Scholar 

  5. Levivier M et al (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg 82(3):445–452

    CAS  PubMed  Google Scholar 

  6. Tyler JL et al (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28(7):1123–1133

    CAS  PubMed  Google Scholar 

  7. Kaschten B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39(5):778–785

    CAS  PubMed  Google Scholar 

  8. Delbeke D et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1):47–52

    CAS  PubMed  Google Scholar 

  9. Di Chiro G et al (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164(2):521–526

    PubMed  Google Scholar 

  10. Padma MV et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64(3):227–237

    CAS  PubMed  Google Scholar 

  11. De Witte O et al (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39(3):470–476, discussion 476–477

    PubMed  Google Scholar 

  12. Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 58(2):250–252

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ricci PE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19(3):407–413

    CAS  PubMed  Google Scholar 

  14. Krohn KA et al (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32(7):663–671

    CAS  PubMed  Google Scholar 

  15. Wong TZ et al (2004) PET and brain tumor image fusion. Cancer J 10(4):234–242

    PubMed  Google Scholar 

  16. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48(9):1468–1481

    PubMed  Google Scholar 

  17. Spence AM et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45(10):1653–1659

    PubMed  Google Scholar 

  18. Kubota K et al (1984) Tumor detection with carbon-11-labelled amino acids. Eur J Nucl Med 9(3):136–140

    CAS  PubMed  Google Scholar 

  19. Fulham MJ et al (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189(1):221–225

    CAS  PubMed  Google Scholar 

  20. Ogawa T et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186(1):45–53

    CAS  PubMed  Google Scholar 

  21. Ogawa T et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32(3):197–202

    CAS  PubMed  Google Scholar 

  22. Ogawa T et al (1994) Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. Radiographics 14(1):101–110

    CAS  PubMed  Google Scholar 

  23. Herholz K et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5):1316–1322

    CAS  PubMed  Google Scholar 

  24. Derlon JM et al (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40(2):276–287, discussion 287–288

    CAS  PubMed  Google Scholar 

  25. Goldman S et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38(9):1459–1462

    CAS  PubMed  Google Scholar 

  26. Pirotte B et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101(3):476–483

    CAS  PubMed  Google Scholar 

  27. De Witte O et al (1994) Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 74(10):2836–2842

    PubMed  Google Scholar 

  28. Chen W et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6):904–911

    CAS  PubMed  Google Scholar 

  29. Seibyl JP, Chen W, Silverman DH (2007) 3, 4-dihydroxy-6-[18f]-fluoro-L-phenylalanine positron emission tomography in patients with central motor disorders and in evaluation of brain and other tumors. Semin Nucl Med 37(6):440–450

    PubMed  Google Scholar 

  30. Popperl G et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34(12):1933–1942

    PubMed  Google Scholar 

  31. Vander Borght T et al (1991) Noninvasive measurement of liver regeneration with positron emission tomography and [2-11C]thymidine. Gastroenterology 101(3):794–799

    CAS  PubMed  Google Scholar 

  32. Vander Borght T et al (1994) Brain tumor imaging with PET and 2-[carbon-11]thymidine. J Nucl Med 35(6):974–982

    CAS  PubMed  Google Scholar 

  33. Goethals P et al (1996) [Methyl-carbon-11] thymidine for in vivo measurement of cell proliferation. J Nucl Med 37(6):1048–1052

    CAS  PubMed  Google Scholar 

  34. Mankoff DA et al (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39(6):1043–1055

    CAS  PubMed  Google Scholar 

  35. De Reuck J et al (1999) [Methyl-11C]thymidine positron emission tomography in tumoral and non-tumoral cerebral lesions. Acta Neurol Belg 99(2):118–125

    PubMed  Google Scholar 

  36. Pruim J et al (1995) Brain tumors: L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 197(1):221–226

    CAS  PubMed  Google Scholar 

  37. Willemsen AT et al (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J Nucl Med 36(3):411–419

    CAS  PubMed  Google Scholar 

  38. de Wolde H et al (1997) Proliferative activity in human brain tumors: comparison of histopathology and L-[1-(11)C]tyrosine PET. J Nucl Med 38(9):1369–1374

    PubMed  Google Scholar 

  39. Hara T et al (1997) PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 38(6):842–847

    CAS  PubMed  Google Scholar 

  40. Hustinx R et al (2003) Whole-body tumor imaging using PET and 2-18F-fluoro-L-tyrosine: preliminary evaluation and comparison with 18F-FDG. J Nucl Med 44(4):533–539

    CAS  PubMed  Google Scholar 

  41. Rutten I et al (2007) PET/CT of skull base meningiomas using 2-18F-fluoro-L-tyrosine: initial report. J Nucl Med 48(5):720–725

    CAS  PubMed  Google Scholar 

  42. Lucignani G et al (1997) Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography with [18F]fluoro-ethyl-spiperone. Eur J Nucl Med 24(9):1149–1155

    CAS  PubMed  Google Scholar 

  43. Black KL et al (1989) Use of thallium-201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 71(3):342–346

    CAS  PubMed  Google Scholar 

  44. Dierckx RA et al (1994) Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 21(7):621–633

    CAS  PubMed  Google Scholar 

  45. Kaplan WD et al (1987) Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 28(1):47–52

    CAS  PubMed  Google Scholar 

  46. Rollins NK, Lowry PA, Shapiro KN (1995) Comparison of gadolinium-enhanced MR and thallium-201 single photon emission computed tomography in pediatric brain tumors. Pediatr Neurosurg 22(1):8–14

    CAS  PubMed  Google Scholar 

  47. Maria BL et al (1997) Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. J Child Neurol 12(6):341–348

    CAS  PubMed  Google Scholar 

  48. Ricci M et al (1996) Relationship between thallium-201 uptake by supratentorial glioblastomas and their morphological characteristics on magnetic resonance imaging. Eur J Nucl Med 23(5):524–529

    CAS  PubMed  Google Scholar 

  49. Ishibashi M et al (1995) Thallium-201 in brain tumors: relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen. J Nucl Med 36(12):2201–2206

    CAS  PubMed  Google Scholar 

  50. Oriuchi N et al (1993) Clinical evaluation of thallium-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities. J Nucl Med 34(12):2085–2089

    CAS  PubMed  Google Scholar 

  51. Oriuchi N et al (1996) Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma. J Nucl Med 37(3):457–462

    CAS  PubMed  Google Scholar 

  52. Hirano T et al (1997) Technetium-99m(V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 38(11):1741–1749

    CAS  PubMed  Google Scholar 

  53. Zingale A et al (1995) Thallium-201-SPECT and 99Tc-HM-PAO SPECT imaging to study functionally cerebral supratentorial neoplasms: the biological basis of the functional imaging interpretation. J Neurosurg Sci 39(4):227–235

    CAS  PubMed  Google Scholar 

  54. Buchpiguel CA et al (1995) PET versus SPECT in distinguishing radiation necrosis from tumor recurrence in the brain. J Nucl Med 36(1):159–164

    CAS  PubMed  Google Scholar 

  55. Bagni B et al (1995) SPET imaging of intracranial tumours with 99Tcm-sestamibi. Nucl Med Commun 16(4):258–264

    CAS  PubMed  Google Scholar 

  56. Beauchesne P et al (1998) Is cerebral tomoscintigraphy with 99mTc-MIBI useful in the diagnosis of local recurrence in patients with malignant gliomas? Cancer Radiother 2(1):42–48

    CAS  PubMed  Google Scholar 

  57. Maffioli L et al (1996) Clinical role of technetium-99m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med 23(3):308–311

    CAS  PubMed  Google Scholar 

  58. O’Tuama LA et al (1993) Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med 34(7):1045–1051

    PubMed  Google Scholar 

  59. Shih WJ et al (1993) Tc-99m sestamibi uptake by cerebellar metastasis from bronchogenic carcinoma. Clin Nucl Med 18(10):887–890

    CAS  PubMed  Google Scholar 

  60. Kuwert T et al (1996) Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 23(10):1345–1353

    CAS  PubMed  Google Scholar 

  61. Kuwert T et al (1997) Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38(10):1551–1555

    CAS  PubMed  Google Scholar 

  62. Langen KJ et al (2000) Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl-L-methionine. J Nucl Med 41(7):1250–1255

    CAS  PubMed  Google Scholar 

  63. Woesler B et al (1997) Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 24(4):428–434

    CAS  PubMed  Google Scholar 

  64. Hellwig D et al (2008) Intra-individual comparison of p-[123I]-iodo-L-phenylalanine and L-3-[123I]-iodo-alpha-methyl-tyrosine for SPECT imaging of gliomas. Eur J Nucl Med Mol Imaging 35(1):24–31

    CAS  PubMed  Google Scholar 

  65. Pacak K et al (2004) The role of [(18)F]fluorodeoxyglucose positron emission tomography and [(111)In]-diethylenetri­aminepentaacetate-D-Phe-pentetreotide scintigraphy in the localization of ectopic adrenocorticotropin-secreting tumors causing Cushing’s syndrome. J Clin Endocrinol Metab 89(5):2214–2221

    CAS  PubMed  Google Scholar 

  66. Tabarin A et al (1999) Usefulness of somatostatin receptor scintigraphy in patients with occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 84(4):1193–1202

    CAS  PubMed  Google Scholar 

  67. Acosta-Gomez MJ et al (2005) The role of somatostatin receptor scintigraphy in patients with pituitary adenoma or post-surgical recurrent tumours. Br J Radiol 78(926):110–115

    CAS  PubMed  Google Scholar 

  68. Moulik PK et al (2002) The role of somatostatin receptor scintigraphy in the management of pituitary tumours. Nucl Med Commun 23(2):117–120

    CAS  PubMed  Google Scholar 

  69. de Herder WW et al (2007) Diagnostic imaging of dopamine receptors in pituitary adenomas. Eur J Endocrinol 156(1):53–56

    Google Scholar 

  70. Kessler LS et al (1998) Thallium-201 brain SPECT of lymphoma in AIDS patients: pitfalls and technique optimization. AJNR Am J Neuroradiol 19(6):1105–1109

    CAS  PubMed  Google Scholar 

  71. Lorberboym M et al (1998) Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary ­lymphoma and nonmalignant lesions in AIDS patients. J Nucl Med 39(8):1366–1369

    CAS  PubMed  Google Scholar 

  72. O’Doherty MJ et al (1997) PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 38(10):1575–1583

    PubMed  Google Scholar 

  73. Villringer K et al (1995) Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 19(4):532–536

    CAS  PubMed  Google Scholar 

  74. Krishna L et al (1992) Abnormal intracerebral thallium localization in a bacterial brain abscess. J Nucl Med 33(11):2017–2019

    CAS  PubMed  Google Scholar 

  75. Tonami N et al (1990) Thallium-201 accumulation in cerebral candidiasis: unexpected finding on SPECT. Clin Nucl Med 15(6):397–400

    CAS  PubMed  Google Scholar 

  76. Gorniak RJ et al (1997) Thallium-201 uptake in cytomegalovirus encephalitis. J Nucl Med 38(9):1386–1388

    CAS  PubMed  Google Scholar 

  77. Bernat I, Toth G, Kovacs L (1994) Tumour-like thallium-201 accumulation in brain infarcts, an unexpected finding on single-photon emission tomography. Eur J Nucl Med 21(3):191–195

    CAS  PubMed  Google Scholar 

  78. Kallen K et al (1997) Evaluation of malignancy in ring enhancing brain lesions on CT by thallium-201 SPECT. J Neurol Neurosurg Psychiatry 63(5):569–574

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Douglas JG et al (2006) [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 64(3):886–891

    CAS  PubMed  Google Scholar 

  80. Grosu AL et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519

    CAS  PubMed  Google Scholar 

  81. Cher LM et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47(3):410–418

    CAS  PubMed  Google Scholar 

  82. Bruehlmeier M et al (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromi­sonidazole and 15O-H2O. J Nucl Med 45(11):1851–1859

    PubMed  Google Scholar 

  83. Rozental JM, Levine RL, Nickles RJ (1991) Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J Neurooncol 10(1):75–83

    CAS  PubMed  Google Scholar 

  84. Rozental JM et al (1993) Acute changes in glucose uptake after treatment: the effects of carmustine (BCNU) on human glioblastoma multiforme. J Neurooncol 15(1):57–66

    CAS  PubMed  Google Scholar 

  85. Barker FG II et al (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79(1):115–126

    CAS  PubMed  Google Scholar 

  86. Raez L et al (1999) Treatment of AIDS-related primary central nervous system lymphoma with zidovudine, ganciclovir, and interleukin 2. AIDS Res Hum Retroviruses 15(8):713–719

    CAS  PubMed  Google Scholar 

  87. Shields AF et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336

    CAS  PubMed  Google Scholar 

  88. Rasey JS et al (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217

    CAS  PubMed  Google Scholar 

  89. Saga T et al (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31(12):774–780

    PubMed  Google Scholar 

  90. Yamamoto Y et al (2006) 3′-Deoxy-3′-[F-18]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 8(6):340–347

    PubMed  Google Scholar 

  91. Chen W et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721

    CAS  PubMed  Google Scholar 

  92. Pauleit D et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(pt 3):678–687

    PubMed  Google Scholar 

  93. Roelcke U et al (1998) Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med 39(5):879–884

    CAS  PubMed  Google Scholar 

  94. Rachinger W et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511

    PubMed  Google Scholar 

  95. Schwartz RB et al (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol 12(6):1187–1192

    CAS  PubMed  Google Scholar 

  96. Schwartz RB et al (1998) Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 89(1):60–68

    CAS  PubMed  Google Scholar 

  97. Lorberboym M et al (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nucl Med 38(2):223–226

    CAS  PubMed  Google Scholar 

  98. Vertosick FT Jr et al (1994) Correlation of thallium-201 single photon emission computed tomography and survival after treatment failure in patients with glioblastoma multiforme. Neurosurgery 34(3):396–401

    PubMed  Google Scholar 

  99. Haldemann AR et al (1995) Somatostatin receptor scintigraphy in central nervous system tumors: role of blood-brain barrier permeability. J Nucl Med 36(3):403–410

    CAS  PubMed  Google Scholar 

  100. Schmidt M et al (1998) Somatostatin receptor imaging in intracranial tumours. Eur J Nucl Med 25(7):675–686

    CAS  PubMed  Google Scholar 

  101. Klutmann S et al (1998) Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma. J Nucl Med 39(11):1913–1917

    CAS  PubMed  Google Scholar 

  102. Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12(3):123–138

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Sfakianakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sfakianakis, G.N., Sfakianaki, E., Gomes, H. (2011). Scintigraphy for Brain Tumors. In: Drevelegas, A. (eds) Imaging of Brain Tumors with Histological Correlations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87650-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87650-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87648-9

  • Online ISBN: 978-3-540-87650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics