Skip to main content

Properties and Application of Hyper-Branched Polymers

  • Chapter
Book cover Three-Dimensional Free-Radical Polymerization

Abstract

Chapter 8 does not presume to describe a variety of hyper-branched polymer (HBP) properties and examples of HBP application. This chapter is based on those studies and publications in which an interrelationship between the unique HBP properties and morphology and topology of HBP structure has been revealed. Special attention is given to industrially produced HBP—Boltorn® and Hybrane®. Problems to be solved in the near future have been formulated—theoretical problems plus analytical and synthetic concerns. Finding solutions to these problems would move us closer to the practical application of HBP. The progress associated with HBP application is so significant that one has grounds to assert that a revolution has occurred in polymeric material science.

As has been indicated earlier (Chap. 7), hyper-branched polymers (HBP) possess unique properties distinguishing them from polymers belonging to other classes. The unusual topological structure, the “core-shell” characterized by a very high local concentration of chain ends in the peripheral layer (shell) of macromolecules and a very high local concentration of branching points in the core, represents a source of these unique properties. As a result, the hydrodynamic volume of HBP macromolecules stops increasing after a certain degree of branching has been reached and, starting from a certain value Mn (usually starting from Mn > 104), the volume becomes significantly less than the hydrodynamic volume of linear macromolecules with the same value Mn. Such compact packing of HBP macromolecules and the large number of free chain ends at the periphery represent the primary structural and physical reasons for the manifestation of the unique HBP properties.

At the macroscopic level, the topological features of HBP are manifested as properties such as high solubility and thermodynamic compatibility, and high sorption capacity in combination with the ability to transport sorbates in those media in which the sorbate is insoluble (this ability allows using HBP as Ners with a high local concentration of reagents). All these properties appeared to be in demand in polymer material science, in medicine, in biology, in electronics, and in other fields of application. It should be pointed out that the HBP application efficiency was so high (improvement in properties by 100–200%!) that it led to a revolution in polymer material science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korolev GV, Bubnova ML (2007) Vysokomolek Soedin A 49:1357–1388 (in Russian)

    CAS  Google Scholar 

  2. Properties and applications of BoltornˆledR (2001) In: Pettersson B (ed) Dendritic polymers. Perstorp Speciality Chemicals AB, SE-284 80 Perstorp, Sweden. BoltornˆledR: Advancing performance & comfort. Perstorp Corp. http://www.perstorp.com/upload/boltorn_002.pdf. Accessed 22 June 2008.

  3. Hybrane, DCM’s hyperbranched polymer platform. DCM Corp. http://www.dsm.com/en US/downloads/hybrane/hybrane molecule.pdf. Accessed 22 June 2008

  4. Ratna D, Varley R, Singh Raman RK, Siman GP (2003) J Mater Sci 38:147–154

    Article  CAS  Google Scholar 

  5. Ratna D, Siman GP (2001) Polymer 42:8833–8839

    Article  CAS  Google Scholar 

  6. Ratna D, Varley R, Siman GP (2003) J Appl Polym Sci 89:2339–2345

    Article  CAS  Google Scholar 

  7. Flohlich J, Kautz, Thoman R et al (2004) Polymer 45:2155–2164

    Article  Google Scholar 

  8. Bergbreiter DE, Boren D, Kippenberger AM (2004) Macromolecules 37:8686–8691

    Article  CAS  Google Scholar 

  9. Xu G, Shi WF, Gong M et al (2004) Eur Polym J 40:483–491

    Article  CAS  Google Scholar 

  10. Ratna D, Becker O, Krishnamurthy R et al (2003) Polymer 44:7449–7457

    Article  CAS  Google Scholar 

  11. Rodlert M, Plummer CJG, Garamszegi L et al (2004) Polymer 45:949–960

    Article  CAS  Google Scholar 

  12. Granick S, Kumar SK, Amis EJ et al (2003) J Polym Sci Polym Phys 41:2755–2793

    Article  CAS  Google Scholar 

  13. Seiler M (2002) Chem Eng Technol 25:237–253

    Article  CAS  Google Scholar 

  14. Voit B, Beyerlein D, Eichhorn KJ et al (2002) Chem Eng Technol 25:704–707

    Article  CAS  Google Scholar 

  15. Hong CY, You YZ, Decheng WU et al (2005) Macromolecules 38:2606–2611

    Article  CAS  Google Scholar 

  16. Crooks RM (2001) Chem Phys Chem 2:644–654

    CAS  Google Scholar 

  17. Kou HG, Shi WF (2004) Eur Polym J 40:1337–1342

    Article  CAS  Google Scholar 

  18. Dzunuzovic E, Tasic S, Bozic B et al (2005) Prog Org Coat 52:136–143

    Article  CAS  Google Scholar 

  19. Hu G, Shi WF (2005) Prog Org Coat 52:110–111

    Article  Google Scholar 

  20. Kong H, Luo P, Gao C et al (2005) Polymer 46:2472–2485

    Article  CAS  Google Scholar 

  21. Zou JH, Zhao YB, Shi WF et al (2005) Polym Adv Technol 16:55–60

    Article  CAS  Google Scholar 

  22. Abd-El-Aziz AS (2002) Macromol Rapid Commun 23:995–1031

    Article  CAS  Google Scholar 

  23. Gao F, Schricker SR, Tong YH et al (2002) J Macromol Sci Pure Appl Chem 39:267–286

    Article  Google Scholar 

  24. Kou HG, Asif A, Shi WF et al (2004) Polym Adv Technol 15:192–196

    Article  CAS  Google Scholar 

  25. Albertsson A-C (ed) (2002) Adv Polym Sci 157:1–179

    Article  CAS  Google Scholar 

  26. Siriba S, Frey H, Haag R (2002) Angew Chem Int Ed 41:1329–1334

    Article  Google Scholar 

  27. Kang SH, Luo JD, Ma H et al (2003) Macromolecules 36:4355–4359

    Article  CAS  Google Scholar 

  28. Siergers C, Biesalski M, Haag R (2004) J Chem Eur 10:2831–2838

    Article  Google Scholar 

  29. Jesberger M, Barner L, Stenzel MH et al (2003) J Polym Sci Polym Chem 41:3847–3861

    Article  CAS  Google Scholar 

  30. Kaanumalle LS, Gibb CLD, Gibb BC, Ramamurthy V (2004) J Am Chem Soc Commun 126:14366–14367

    Article  CAS  Google Scholar 

  31. Tomalia DA (2005) Progr Polym Sci 30:294–324

    Article  CAS  Google Scholar 

  32. Teertstra SJ, Gauthier M (2004) Progr Polym Sci 29:277–327

    Article  CAS  Google Scholar 

  33. Thompson CH, Hu J, Kaganove SN et al (2004) Chem Mater 16:5357–5364

    Article  Google Scholar 

  34. Belge G, Beyerlein D, Betsch C et al (2002) Anal Bioanal Chem 374:403–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korolev, G.V., Mogilevich, M.M. (2009). Properties and Application of Hyper-Branched Polymers. In: Three-Dimensional Free-Radical Polymerization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87567-3_8

Download citation

Publish with us

Policies and ethics