Skip to main content

On Contemporary Denotational Mathematics for Computational Intelligence

  • Chapter
Transactions on Computational Science II

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5150))

Abstract

Denotational mathematics is a category of expressive mathematical structures that deals with high-level mathematical entities beyond numbers and sets, such as abstract objects, complex relations, behavioral information, concepts, knowledge, processes, intelligence, and systems. New forms of mathematics are sought, collectively known as denotational mathematics, in order to deal with complex mathematical entities emerged in cognitive informatics, computational intelligence, software engineering, and knowledge engineering. The domain and architecture of denotational mathematics are presented in this paper. Three paradigms of denotational mathematics, known as concept algebra, system algebra, and Real-Time Process Algebra (RTPA), are introduced. Applications of denotational mathematics in cognitive informatics and computational intelligence are elaborated. A set of case studies is presented on the modeling of iterative and recursive systems architectures and behaviors by RTPA, the modeling of autonomic machine learning by concept algebra, and the modeling of granular computing by system algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley Publication Co., New York (1985)

    MATH  Google Scholar 

  2. Anderson, J.R.: The Architecture of Cognition. Harvard Univ. Press, Cambridge (1983)

    Google Scholar 

  3. Ashby, W.R.: Principles of the Self-Organizing System. In: von Foerster, H., Zopf, G. (eds.) Principles of Self-Organization, pp. 255–278. Pergamon, Oxford (1962)

    Google Scholar 

  4. Ashby, W.R.: Requisite Variety and Implications for Control of Complex Systems. Cybernetica 1, 83–99 (1985)

    MATH  Google Scholar 

  5. Bender, E.A.: Mathematical Methods in Artificial Intelligence. IEEE CS Press, Los Alamitos (1996)

    MATH  Google Scholar 

  6. Chomski, N.: Three Models for the Description of Languages. I.R.E. Transactions on Information Theory 2(3), 113–124 (1956)

    Article  Google Scholar 

  7. Codin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on Galois (Concept) Lattices. Computational Intelligence 11(2), 246–267 (1995)

    Article  Google Scholar 

  8. Colins, A.M., Loftus, E.F.: A Spreading-Activation Theory of Semantic Memory. Psychological Review 82, 407–428 (1975)

    Article  Google Scholar 

  9. Ellis, D.O., Fred, J.L.: Systems Philosophy. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  10. Ford, J.: Chaos: Solving the Unsolvable. Dynamics and Fractals. Academic Press, London (1986)

    Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis, pp. 1–5. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  12. Hampton, J.A.: Psychological Representation of Concepts of Memory, pp. 81–110. Psychology Press, Hove, England (1997)

    Google Scholar 

  13. Heylighen, F.: Self-Organization, Emergence and the Architecture of Complexity. In: Proc. 1st European Conf. on System Science (AFCET), Paris, pp. 23–32 (1989)

    Google Scholar 

  14. Higman, B.: A Comparative Study of Programming Languages, 2nd edn., MacDonald (1977)

    Google Scholar 

  15. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM 21(8), 666–677 (1978)

    Article  MATH  Google Scholar 

  16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London (1985)

    MATH  Google Scholar 

  17. Hurley, P.J.: A Concise Introduction to Logic, 6th edn. Wadsworth Pub. Co., ITP (1997)

    MATH  Google Scholar 

  18. Klir, G.J.: Facets of Systems Science. Plenum, New York (1992)

    Google Scholar 

  19. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd edn. Prentice-Hall International, Englewood Cliffs (1998)

    Google Scholar 

  20. Lin, T.Y.: Granular Computing on Binary Relations (I): Data Mining and Neighborhood Systems. In: Proc. Rough Sets in Knowledge Discovery, pp. 107–120. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  21. Louden, K.C.: Programming Languages: Principles and Practice. PWS-Kent Publishing Co., Boston (1993)

    MATH  Google Scholar 

  22. Matlin, M.W.: Cognition, 4th edn. Harcourt Brace College Pub., NY (1998)

    Google Scholar 

  23. Medin, D.L., Shoben, E.J.: Context and Structure in Conceptual Combination. Cognitive Psychology 20, 158–190 (1988)

    Article  Google Scholar 

  24. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  25. Murphy, G.L.: Theories and Concept Formation. In: Mechelen, I.V., et al. (eds.) Categories and Concepts, Theoretical Views and Inductive Data Analysis, pp. 173–200. Academic Press, London (1993)

    Google Scholar 

  26. Pavel, M.: Fundamentals of Pattern Recognition, 2nd edn. Addision-Wesley, Reading (1993)

    MATH  Google Scholar 

  27. Pawlak, Z.: Rough Logic, Bulletin of the Polish Academy of Science. Technical Science 5(6), 253–258 (1987)

    Google Scholar 

  28. Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Physica-Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  29. Pnueli, A.: The Temporal Logic of Programs. In: Proc. 18th IEEE Symposium on Foundations of Computer Science, pp. 46–57. IEEE, Los Alamitos (1977)

    Google Scholar 

  30. O’Grady, W., Archibald, J.: Contemporary Linguistic Analysis: An Introduction, 4th edn. Pearson Education Canada Inc., Toronto (2000)

    Google Scholar 

  31. Rapoport, A.: Mathematical Aspects of General Systems Theory. General Systems Yearbook 11, 3–11 (1962)

    Google Scholar 

  32. Skarda, C.A., Freeman, W.J.: How Brains Make Chaos into Order. Behavioral and Brain Sciences 10 (1987)

    Google Scholar 

  33. Skowron, A., Stepaniuk, J.: Information Granules: Towards Foundations of Granular Computing. International Journal of Intelligent Systems 16, 57–85 (2001)

    Article  MATH  Google Scholar 

  34. Smith, E.E., Medin, D.L.: Categories and Concepts. Harvard Univ. Press, Cambridge (1981)

    Book  Google Scholar 

  35. von Bertalanffy, L.: Problems of Life: An Evolution of Modern Biological and Scientific Thought. C.A. Watts, London (1952)

    Google Scholar 

  36. von Neumann, J.: The Principles of Large-Scale Computing Machines. Annals of History of Computers 3(3), 263–273 (reprinted, 1946)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.: The Real-Time Process Algebra (RTPA). Annals of Software Engineering: A International Journal, USA 14, 235–274 (2002)

    Article  MATH  Google Scholar 

  38. Wang, Y.: Keynote: On Cognitive Informatics. In: Proc. 1st IEEE International Conference on Cognitive Informatics (ICCI 2002), Calgary, Canada, pp. 34–42. IEEE CS Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  39. Wang, Y.: On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of Neuroscience and Neurophilosophy, USA 4(3), 151–167 (2003)

    Article  MathSciNet  Google Scholar 

  40. Wang, Y.: Using Process Algebra to Describe Human and Software System Behaviors. Brain and Mind 4(2), 199–213 (2003)

    Article  Google Scholar 

  41. Wang, Y.: On the Informatics Laws and Deductive Semantics of Software. IEEE Transactions on Systems, Man, and Cybernetics (C) 36(2), 161–171 (2006)

    Article  Google Scholar 

  42. Wang, Y.: Cognitive Informatics and Contemporary Mathematics for Knowledge Representation and Manipulation. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 69–78. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  43. Wang, Y.: Software Engineering Foundations: A Software Science Perspective. CRC Series in Software Engineering, vol. II. Auerbach Publications, USA (2007)

    Book  MATH  Google Scholar 

  44. Wang, Y.: The Theoretical Framework of Cognitive Informatics. International Journal of Cognitive Informatics and Natural Intelligence 1(1), 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  45. Wang, Y.: The OAR Model of Neural Informatics for Internal Knowledge Representation in the Brain. International Journal of Cognitive Informatics and Natural Intelligence 1(3), 64–75 (2007)

    Google Scholar 

  46. Wang, Y.: Keynote: On Theoretical Foundations of Software Engineering and Denotational Mathematics. In: Proc. 5th Asian Workshop on Foundations of Software, Xiamen, China, pp. 99–102 (2007)

    Google Scholar 

  47. Wang, Y.: The Theoretical Framework and Cognitive Process of Learning. In: Proc. 6th International Conference on Cognitive Informatics (ICCI 2007), Lake Tahoe, CA, pp. 470–479. IEEE CS Press, Los Alamitos (2007)

    Google Scholar 

  48. Wang, Y.: On the Big-R Notation for Describing Iterative and Recursive Behaviors. International Journal of Cognitive Informatics and Natural Intelligence 2(1), 17–28 (2008)

    Article  Google Scholar 

  49. Wang, Y.: On Concept Algebra: A Denotational Mathematical Structure for Knowledge and Software Modeling. International Journal of Cognitive Informatics and Natural Intelligence 2(2), 1–19 (2008)

    Article  Google Scholar 

  50. Wang, Y.: On System Algebra: A Denotational Mathematical Structure for Abstract System Modeling. International Journal of Cognitive Informatics and Natural Intelligence 2(2), 20–42 (2008)

    Article  Google Scholar 

  51. Wang, Y.: RTPA: A Denotational Mathematics for Manipulating Intelligent and Computational Behaviors. International Journal of Cognitive Informatics and Natural Intelligence 2(2), 44–62 (2008)

    Article  Google Scholar 

  52. Wang, Y.: Deductive Semantics of RTPA. International Journal of Cognitive Informatics and Natural Intelligence 2(2), 95–121 (2008)

    Article  Google Scholar 

  53. Wang, Y., Wang, Y., Patel, S., Patel, D.: A Layered Reference Model of the Brain (LRMB). IEEE Trans. on Systems, Man, and Cybernetics (C) 36(2), 124–133 (2006)

    Article  Google Scholar 

  54. Wang, Y., Lotfi, A.: On the System Algebra Foundation for Granular Computing. International Journal of Software Science and Computational Intelligence 1(1) (December 2008)

    Google Scholar 

  55. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Chapter  Google Scholar 

  56. Wilson, L.B., Clark, R.G.: Comparative Programming Language. Addison-Wesley Publishing Co, Reading (1988)

    MATH  Google Scholar 

  57. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall International, London (1996)

    MATH  Google Scholar 

  58. Yao, Y.Y.: Information Granulation and Rough Set Approximation. International Journal of Intelligent Systems 16(1), 87–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yao, Y.Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  60. Zadeh, L.A.: Fuzzy Sets and Systems. In: Fox, J. (ed.) Systems Theory, pp. 29–37. Polytechnic Press, Brooklyn (1965)

    Google Scholar 

  61. Zadeh, L.A.: Outline of a New Approach to Analysis of Complex Systems. IEEE Trans. on Sys. Man and Cyb. 1(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M.M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Y. (2008). On Contemporary Denotational Mathematics for Computational Intelligence. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Yao, Y., Wang, G. (eds) Transactions on Computational Science II. Lecture Notes in Computer Science, vol 5150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87563-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87563-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87562-8

  • Online ISBN: 978-3-540-87563-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics