Skip to main content

A Computational Model of Saliency Map Read-Out during Visual Search

  • Conference paper
  • 2418 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Abstract

When searching for a target in a visual scene filled with distractors, the mechanism of inhibition of return prevents revisiting previously attended locations. We proposed a new computational model for the inhibition of return, which is able to examine priority or saliency map in a manner consistent with psychophysical findings. The basic elements of the model are two neural integrators connected with two inhibitory interneurons. The integrators keep the saliency value of the currently attended location in the working memory. The inhibitory inter-neurons modulate a feedforward flow of information between the saliency map and the output map which points to the location of interest. Computer simulations showed that the model is able to read-out the saliency map when the objects are moving or when eye movements are present. Also, it is able to simultaneously select more then one location, even when they are non-contiguous. The model can be considered as a neural implementation of the episodic theory of attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bricolo, E., Gianesini, T., Fanini, A., Bundasen, C., Chelazzi, L.: Serial attention mechanisms in visual search: A direct behavioural demonstration. J. Cogn. Neurosci. 14, 980–993 (2002)

    Article  Google Scholar 

  2. Brody, C.D., Romo, R., Kepecs, A.: Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol. 13, 204–211 (2003)

    Article  Google Scholar 

  3. Callaway, E.M.: Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw. 17, 625–632 (2004)

    Article  MATH  Google Scholar 

  4. Deco, G., Pollatos, O., Zihl, J.: The time course of selective visual attention: theory and experiments. Vision Res. 42, 2925–2945 (2002)

    Article  Google Scholar 

  5. Domijan, D.: A mathematical model of persistent neural activity in human prefrontal cortex for visual feature binding. Neurosci. Lett. 350, 89–92 (2003)

    Article  Google Scholar 

  6. Domijan, D.: Recurrent network with large representational capacity. Neural Comput. 16, 1917–1942 (2004)

    Article  MATH  Google Scholar 

  7. Grossberg, S., Mingolla, E., Ross, W.D.: A neural theory of attentive visual search: Interactions of boundary, surface, spatial and object representations. Psychol. Rev. 101, 470–489 (1994)

    Article  Google Scholar 

  8. Hahnloser, R., Douglas, R.J., Mahowald, M., Hepp, K.: Feedback interactions between neuronal pointers and maps for attentional processing. Nat. Neurosci. 2, 746–752 (1999)

    Article  Google Scholar 

  9. Herd, S.A., O’Reilly, R.C.: Serial visual search from a parallel model. Vision Res. 45, 2987–2992 (2005)

    Article  Google Scholar 

  10. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40, 1489–1506 (2000)

    Article  Google Scholar 

  11. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–204 (2001)

    Article  Google Scholar 

  12. Klein, R.M.: Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000)

    Article  Google Scholar 

  13. Koulakov, A.A., Raghavachari, S., Kepecs, A., Lisman, J.E.: Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002)

    Article  Google Scholar 

  14. London, M., Hausser, M.: Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  Google Scholar 

  15. McMains, S.A., Somers, D.C.: Multiple spotlights of attentional selection in human visual cortex. Neuron 42, 677–686 (2004)

    Article  Google Scholar 

  16. Muller, N.G., Donner, T.H., Bartelt, O.A., Brandt, S.A., Villringer, A., Kleinschmidt, A.: The functional neuroanatomy of visual conjunction search: a parametric fMRI study. NeuroImage 20, 1578–1590 (2003)

    Article  Google Scholar 

  17. Sperling, G., Weichselgartner, E.: Episodic theory of the dynamics of spatial attention. Psychol. Rev. 102, 503–532 (1995)

    Article  Google Scholar 

  18. Treue, S.: Visual attention: the where, how and why of saliency. Curr. Opin. Neurobiol. 13, 428–432 (2003)

    Article  Google Scholar 

  19. Wolfe, J.M.: Moving towards solutions to some enduring controversies in visual search. Trends Cogn. Sci. 7, 70–76 (2003)

    Article  Google Scholar 

  20. Woodman, G.F., Luck, S.J.: Serial deployment of attention during visual search. J. Exp. Psychol. Hum. Percept. Perform. 29, 121–138 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šetić, M., Domijan, D. (2008). A Computational Model of Saliency Map Read-Out during Visual Search. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics