Skip to main content

Support Vector Machines for Visualization and Dimensionality Reduction

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

Discriminant functions calculated by Support Vector Machines (SVMs) define in a computationally efficient way projections of high-dimensional data on a direction perpendicular to the discriminating hyperplane. These projections may be used to estimate and display posterior probability densities . Additional directions for visualization and dimensionality reduction are created by repeating the linear discrimination process in a space orthogonal to already defined projections. This process allows for an efficient reduction of dimensionality and visualization of data, at the same time improving classification accuracy of a single discriminant function. Visualization of real and artificial data shows that transformed data may not be separable and thus linear discrimination will completely fail, but the nearest neighbor or rule-based methods in the reduced space may still provide simple and accurate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Pȩkalska, E., Duin, R.: The dissimilarity representation for pattern recognition: foundations and applications. World Scientific, Singapore (2005)

    Google Scholar 

  3. Duch, W.: Visualization of hidden node activity in neural networks: I. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 38–43. Springer, Heidelberg (2004)

    Google Scholar 

  4. Duch, W.: Coloring black boxes: visualization of neural network decisions. In: Int. Joint Conf. on Neural Networks, Portland, vol. I, pp. 1735–1740. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  5. Webb, A.: Statistical Pattern Recognition. J. Wiley & Sons, Chichester (2002)

    MATH  Google Scholar 

  6. Naud, A.: An Accurate MDS-Based Algorithm for the Visualization of Large Multidimensional Datasets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 643–652. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Merz, C., Murphy, P.: UCI repository of machine learning databases (2007)

    Google Scholar 

  9. Golub, T.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  10. Wolberg, W.H., Mangasarian, O.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In: PNAS, vol. 87, pp. 9193–9196 (1990)

    Google Scholar 

  11. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. van der Maaten, L., Postma, E., van den Herik, H.: Dimensionality reduction: A comparative review (in print, 2008)

    Google Scholar 

  14. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  15. Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Google Scholar 

  16. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 13–22. Physica Verlag, Springer, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maszczyk, T., Duch, W. (2008). Support Vector Machines for Visualization and Dimensionality Reduction. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics