Skip to main content

Bayesian Ying-Yang Learning on Orthogonal Binary Factor Analysis

  • Conference paper
  • 1993 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Abstract

Binary Factor Analysis (BFA) aims to discover latent binary structures in high dimensional data. Parameter learning in BFA suffers from exponential complexity and a large number of local optima. Model selection in BFA is therefore difficult. The traditional approach for model selection is implemented in a two phase procedure. On a prefixed range of model scales, maximum likelihood (ML) learning is performed for each candidate scale. After this enumeration, the optimum scale is selected according to some criterion. In contrast, the Bayesian Ying-Yang (BYY) learning starts from a high dimensional model and automatically deducts the dimension during parameter learning. The enumeration overhead in the two phase approach is saved. This paper investigates a subclass of BFA called Orthogonal Binary Factor Analysis (OBFA). A BYY machine for OBFA is constructed. The harmony measure, which serves as the objective function in the BYY harmony learning, is more accurately estimated by recovering a term that was missing in the previous studies on BYY learning based BFA. Comparison with traditional two phase implementations shows good performance of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.W., Rubin, H.: Statistical inference in factor analysis. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, vol. 5, pp. 111–150 (1956)

    Google Scholar 

  2. Bartholomew, D.J., Knott, M.: Latent variable models and factor analysis. Kendallas Library of Statistics, vol. 7. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  3. Heinen, T.: Latent class and discrete latent trait models: Similarities and differences. Sage, Thousand Oaks (1996)

    Google Scholar 

  4. Treier, S., Jackman, S.: Beyond factor analysis: modern tools for social measurement. In: The 2002 Annual Meetings of the Western Political Science Association and the Midwest Political Science Association (2002)

    Google Scholar 

  5. Tapchi, G.: System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. UNIPUB/Kraus International Publications (1987)

    Google Scholar 

  6. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automatic Control 19(6), 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bozdogan, H.: Model selection and Akaikeas information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  10. Xu, L.: A Unified Learning Scheme: Bayesian-Kullback Ying-Yang Machine. In: Touretzky, D.S., et al. (eds.) Advances in NIPS, vol. 8, pp. 444–450. MIT Press, Cambridge (1996); A preliminary version in Proc. ICONIP 1995, Beijing, pp. 977–988 (1995)

    Google Scholar 

  11. Xu, L.: Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Trans. Neural Networks 15(5), 885–902 (2004)

    Article  Google Scholar 

  12. Xu, L.: Bayesian Ying Yang learning. Scholarpedia 2(3), 1809 (2007), http://scholarpedia.org/article/Bayesian_Ying_Yang_Learning

    Google Scholar 

  13. Xu, L.: Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family. In: Zurada, J.M., et al. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050, pp. 48–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. An, Y., et al.: A Comparative Investigation on Model Selection in Binary Factor Analysis. Studies in Computational Intelligence 6, 145–160 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, K., Xu, L. (2008). Bayesian Ying-Yang Learning on Orthogonal Binary Factor Analysis. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics