Skip to main content

A Calculus of Realizers for EM 1 Arithmetic (Extended Abstract)

  • Conference paper
Book cover Computer Science Logic (CSL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5213))

Included in the following conference series:

Abstract

We propose a realizability interpretation of a system for quantifier free arithmetic which is equivalent to the fragment of classical arithmetic without nested quantifiers, which we call EM 1-arithmetic. We interpret classical proofs as interactive learning strategies, namely as processes going through several stages of knowledge and learning by interacting with the “environment” and with each other. With respect to known constructive interpretations of classical arithmetic, the present one differs under many respects: for instance, the interpretation is compositional in a strict sense; in particular the interpretation of (the analogous of) the cut rule is the plain composition of functionals. As an additional remark, any two quantifier-free formulas provably equivalent in classical arithmetic have the same realizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of the law of excluded middle and related principles. In: Proc. of LICS 2004, pp. 192–201 (2004)

    Google Scholar 

  2. Berardi, S., de’ Liguoro, U.: A Calculus of Realizers for EM1 Arithmetic (Full Version). Technical report, Università di Torino (2008), http://www.di.unito.it/~stefano/RealWFA.pdf

  3. Coquand, T.: A semantics of evidence for classical arithmetic. J. Symb. Log. 60, 325–337 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Criscuolo, G., Minicozzi, E., Trautteur, G.: Limiting recursion and the arithmetic hierarchy. ITA 9(1), 5–12 (1975)

    MathSciNet  Google Scholar 

  5. Friedman, H.: Classically and intuitionistically provably recursive functions. In: Scott, D.S., Muller, G.H. (eds.) Higher Set Theory. LNM, vol. 699, pp. 21–28. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  6. Gold, E.M.: Limiting recursion. J. Symb. Log. 30, 28–48 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Griffin, T.G.: The formulae-as-types notion of control. In: Conf. Record 17th Annual ACM Symp. on Principles of Programming Languages, POPL 1990, San Francisco, CA, USA, January 17–19, pp. 47–57. ACM Press, New York (1990)

    Chapter  Google Scholar 

  8. Hayashi, S.: Mathematics based on incremental learning, excluded middle and inductive inference. Theor. Comp. Sci. 350, 125–139 (2006)

    Article  MATH  Google Scholar 

  9. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer, Heidelberg (1970)

    Google Scholar 

  10. Krivine, J.-L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308, 259–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mints, G.: Strong termination for the epsilong substitution method. J. Symb. Log. 61(4), 1193–1205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Moser, G., Zach, R.: The epsilon calculus and herbrand complexity. Studia Logica 82(1), 133–155 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murthy, C.R.: An evaluation semantics for classical proofs. In: Proc. of LICS 1991, pp. 96–107 (1991)

    Google Scholar 

  14. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In: LPAR, pp. 190–201 (1992)

    Google Scholar 

  15. Schubert, L.K.: Iterated limiting recursion and the program minimalization problem. J. of Ass. Comp. Mach. 21(3), 436–445 (1974)

    MATH  MathSciNet  Google Scholar 

  16. van Dalen, D., Troelstra, A.: Constructivism in Mathematics, vol. I. North-Holland, Amsterdam (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Kaminski Simone Martini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berardi, S., de’Liguoro, U. (2008). A Calculus of Realizers for EM 1 Arithmetic (Extended Abstract). In: Kaminski, M., Martini, S. (eds) Computer Science Logic. CSL 2008. Lecture Notes in Computer Science, vol 5213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87531-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87531-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87530-7

  • Online ISBN: 978-3-540-87531-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics