Advertisement

Integration of ACO in a Constraint Programming Language

  • Madjid Khichane
  • Patrick Albert
  • Christine Solnon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

We propose to integrate ACO in a Constraint Programming (CP) language. Basically, we use the CP language to describe the problem to solve by means of constraints and we use the CP propagation engine to reduce the search space and check constraint satisfaction; however, the classical backtrack search of CP is replaced by an ACO search. We report first experimental results on the car sequencing problem and compare different pheromone strategies for this problem.

Keywords

Constraint Program Constraint Satisfaction Problem Partial Assignment Constraint Program Model Solve Constraint Satisfaction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    ILOG: Ilog solver user’s manual. Technical report, ILOG (1998)Google Scholar
  3. 3.
    Meyer, B., Ernst, A.: Integrating aco and constraint propagation. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)Google Scholar
  5. 5.
    Schoofs, L., Naudts, B.: Solving csps with ant colonies. In: ANTS (2000)Google Scholar
  6. 6.
    Roli, A., Blum, C., Dorigo, M.: ACO for maximal constraint satisfaction problems. In: Meta–heuristics International Conference (MIC) (2001)Google Scholar
  7. 7.
    Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 6(4), 347–357 (2002)CrossRefGoogle Scholar
  8. 8.
    Solnon, C.: Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization. In: EJOR (to appear, 2008)Google Scholar
  9. 9.
    Smith, B.: Succeed-first or fail-first: A case study in variable and value ordering heuristics. In: PaCT 1997, pp. 321–330 (1996)Google Scholar
  10. 10.
    Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems, special issue on Ant Algorithms 16, 889–914 (2000)CrossRefGoogle Scholar
  11. 11.
    Kis, T.: On the complexity of the car sequencing problem. Operations Research Letters 32, 331–335 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing problem: overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. In: EJOR (to appear, 2008)Google Scholar
  13. 13.
    Dincbas, M., Simonis, H., van Hentenryck, P.: Solving the car-sequencing problem in constraint logic programming. In: Kodratoff, Y. (ed.) Proceedings of ECAI-1988, pp. 290–295 (1988)Google Scholar
  14. 14.
    Gent, I., Walsh, T.: CSPLib: A benchmark library for constraints. Technical report (1999), http://csplib.cs.strath.ac.uk/
  15. 15.
    Gravel, M., Gagné, C., Price, W.: Review and comparison of three methods for the solution of the car-sequencing problem. In: JORS (2004)Google Scholar
  16. 16.
    Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and ACO approaches for car sequencing problems. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Boysen, N., Fliedner, M.: Comments on  solving real car sequencing problems with ant colony optimization. EJOR 182(1), 466–468 (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Regin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Lee, J., Leung, H., Won, H.: Performance of a comprehensive and efficient constraint library using local search. In: 11th Australian JCAI. LNCS (LNAI). Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Perron, L., Shaw, P.: Combining forces to solve the car sequencing problem. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 225–239. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press, Cambridge (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Madjid Khichane
    • 1
    • 2
  • Patrick Albert
    • 1
  • Christine Solnon
    • 2
  1. 1.ILOG SAGentillyFrance
  2. 2.LIRIS CNRS UMR 5205University of Lyon IVilleurbanneFrance

Personalised recommendations