Social Odometry in Populations of Autonomous Robots

  • Álvaro Gutiérrez
  • Alexandre Campo
  • Francisco C. Santos
  • Carlo Pinciroli
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)


The improvement of odometry systems in collective robotics remains an important challenge for several applications. In this work, we propose a localisation strategy in which robots have no access to centralised information. Each robot has an estimate of its own location and an associated confidence level that decreases with distance travelled. Robots use estimates advertised by neighbouring robots to correct their own location estimates at each time-step. This simple online social form of odometry is shown to allow a group of robots to both increase the quality of individuals’ estimates and efficiently improve their collective performance. Furthermore, social odometry produces a successful self-organised collective pattern.


Mobile Robot Central Place Round Trip Autonomous Robot Collective Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, C.M.: Location estimation and uncertainty analysis for mobile robots. Autonomous Robot Vehicles 1(1), 90–95 (1990)Google Scholar
  2. 2.
    Larsen, T., Bak, M., Andersen, N., Ravn, O.: Location estimation for autonomously guided vehicle using an augmented Kalman filter to autocalibrate the odometry. In: FUSION 1998 Spie Conference, pp. 33–39. CSREA Press, Las Vegas (1998)Google Scholar
  3. 3.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 321–328. Robotics and Automation Society, NJ (2000)Google Scholar
  4. 4.
    Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Autonomous Robots 8(1), 43–52 (2000)CrossRefGoogle Scholar
  5. 5.
    Grabowski, R., Navarro-Serment, L., Paredis, C., Khosla, P.: Heterogeneous teams of modular robots for mapping and exploration. Autonomous Robots 8(2), 293–308 (2000)CrossRefGoogle Scholar
  6. 6.
    Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence 2(1), 1–23 (2008)CrossRefGoogle Scholar
  7. 7.
    Vaughan, R., Stoy, K., Sukhatme, G., Matarić, M.: LOST: Localization-space trails for robot teams. IEEE Transactions on Robotics and Automation 18(5), 796–812 (2002)CrossRefGoogle Scholar
  8. 8.
    Balch, T.: Reward and diversity in multirobot foraging. In: IJCAI-1999 Workshop on Agents Learning About, From and With other Agents, pp. 15–21. Morgann Kaufman, San Francisco (1997)Google Scholar
  9. 9.
    Klarer, P.: Simple 2-d navigation for wheeled vehicles. Technical report, Sandia Report SAND88-0540, Sandia National Laboratories, Livermore, CA (1988)Google Scholar
  10. 10.
    Feng, L., Borenstein, J., Everett, H.: Where am I? Sensors and Methods for Autonomous Mobile Robot Positioning. University of Michigan Press, Ann Arbor (1994)Google Scholar
  11. 11.
    Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation 12, 869–880 (1999)CrossRefGoogle Scholar
  12. 12.
    Chong, K., Kleeman, L.: Accurate odometry and error modelling for a mobile robot. In: IEEE International Conference on Robotics and Automation, pp. 2783–2788. Robotics and Automation Society, NJ (1997)Google Scholar
  13. 13.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Computational Biology 2(10), e140 (2006)CrossRefGoogle Scholar
  14. 14.
    Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating multi-robot controllers. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 637–642. AAAI Press, Menlo Park (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Álvaro Gutiérrez
    • 1
  • Alexandre Campo
    • 2
  • Francisco C. Santos
    • 2
  • Carlo Pinciroli
    • 2
  • Marco Dorigo
    • 2
  1. 1.ETSITUniversidad Politécnica de MadridMadridSpain
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations