Advertisement

Lattice Formation in Space for a Swarm of Pico Satellites

  • Carlo Pinciroli
  • Mauro Birattari
  • Elio Tuci
  • Marco Dorigo
  • Marco del Rey Zapatero
  • Tamas Vinko
  • Dario Izzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

We present a distributed control strategy that lets a swarm of satellites autonomously form a lattice in orbit around a planet. The system, based on the artificial potential field approach, proposes a novel way to split the artificial field in two main terms: a global artificial field that gathers the satellites around a predefined meeting point, and a local term that allows a satellite to place itself in the correct position relative to its closest neighbors. We apply the method to the problem of forming a two dimensional hexagonal lattice, using the well-known Lennard-Jones potential as local artificial field. The control parameters have been obtained with a genetic algorithm to maximize the precision of the formed lattice. The precision does not depend on the number of satellites and convergence is achieved from all initial distributions of the satellites.

Keywords

Genetic Algorithm Hexagonal Lattice Virtual Force Placement Error Artificial Potential Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Curtis, S., Mica, J., Nuth, J., Marr, G., Rilee, M., Bhat, M.: ANTS (Autonomous Nano-Technology Swarm): An artificial intelligence approach to asteroid belt resource exploration. In: International Astronautical Federation, 51th Congress (2000)Google Scholar
  2. 2.
    D’Arrigo, P., Santandrea, S.: The APIES mission. ASTRIUM Ltd./ESA-ESTEC Feasibility Study A0/1-3846/02/NL/JA, Stevenage, UK (2004)Google Scholar
  3. 3.
    Mori, M., Nagayama, H., Saito, Y., Matsumoto, H.: Summary of studies on space solar power systems of the national space development agency of Japan. Acta Astronautica 54(5), 337–345 (2004)CrossRefGoogle Scholar
  4. 4.
    Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., del Rey Zapatero, M., Vinko, T., Izzo, D.: Self-organizing and scalable shape formation for a swarm of pico satellites. In: Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2008). IEEE Computer Society Press, Washington (in press, 2008)Google Scholar
  5. 5.
    Clohessey, W., Wiltshire, R.: Terminal guidance systems for satellite rendez-vous. Journal of the Aerospace Sciences 27(9), 653–658 (1960)Google Scholar
  6. 6.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1), 90–98 (1986)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ge, S.S., Cui, Y.I.: Dynamic motion planning for mobile robots using potential field method. Autonomous Robots 13(3), 207–222 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Badawy, A., McInnes, C.: On-orbit assembly using superquadric potential fields. Journal of Guidance, Control, and Dynamics 31(1), 30–43 (2008)CrossRefGoogle Scholar
  9. 9.
    Balch, T., Arkin, R.C.: Motor schema-based formation control for multiagent robot teams. In: Lesser, V., Gasser, L. (eds.) Proceedings of the First International Conference on Multiagent Systems (ICMAS 1995), pp. 10–16. AAAI Press, San Francisco (1995)Google Scholar
  10. 10.
    Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17(2-3) (2004)Google Scholar
  11. 11.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1986)Google Scholar
  12. 12.
    Lamport, L.: Lower bounds on asynchronous consensus. In: Schiper, A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 22–23. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo Pinciroli
    • 1
  • Mauro Birattari
    • 1
  • Elio Tuci
    • 1
  • Marco Dorigo
    • 1
  • Marco del Rey Zapatero
    • 2
  • Tamas Vinko
    • 2
  • Dario Izzo
    • 2
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.European Space AgencyNoordwijkThe Netherlands

Personalised recommendations