Advertisement

Incorporating Heuristics in a Swarm Intelligence Framework for Inferring Gene Regulatory Networks from Gene Expression Time Series

  • Kyriakos Kentzoglanakis
  • Matthew Poole
  • Carl Adams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

In this paper, we address the problem of reverse-engineering a gene regulatory network from gene expression time series. We approach the problem by implementing an ant system to generate candidate network structures. The quality of a candidate structure is evaluated using a particle swarm optimization algorithm that tunes the parameters of the corresponding model, by minimizing the error between the actual time series and the trained model’s output. We extend this approach by incorporating domain-specific heuristics to the ant system, as a mechanism that has the potential to bias the pheromone amplification effect towards biologically plausible relationships. We apply the method to a subset of genes from a real world data set and report on the results.

Keywords

Particle Swarm Optimization Gene Regulatory Network Swarm Intelligence Boolean Network Dynamic Bayesian Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, U.: An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  2. 2.
    Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)CrossRefGoogle Scholar
  3. 3.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)CrossRefGoogle Scholar
  4. 4.
    Ressom, H., Zhang, Y., Xuan, J., Wang, Y., Clarke, R.: Inference of gene regulatory networks from time course gene expression data using neural networks and swarm intelligence. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 1–8 (2006)Google Scholar
  5. 5.
    Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95(25), 14863–14868 (1998)CrossRefGoogle Scholar
  6. 6.
    D’Haeseleer, P., Wen, X., Fuhrman, S.: Mining the gene expression matrix: inferring gene relationships from large scale gene expression data. In: Second International Workshop on Information Processing in Cell and Tissues, pp. 203–212 (1998)Google Scholar
  7. 7.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9(1), 69–105 (2002)CrossRefGoogle Scholar
  8. 8.
    Somogyi, R., Fuhrman, S., Askenazi, M.: The gene expression matrix: towards the extraction of genetic network architectures. Nonlinear Analysis, Theory, Methods & Applications 30(3), 1815–1824 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Perrin, B., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alche Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl. 2), ii 138–ii 148 (2003)Google Scholar
  10. 10.
    Vohradsky, J.: Neural model of the genetic network. Journal of Biological Chemistry 276(39), 36168–36173 (2001)CrossRefGoogle Scholar
  11. 11.
    Wahde, M., Hertz, J.: Modeling Genetic Regulatory Dynamics in Neural Development. Journal of Computational Biology 8(4), 429–442 (2001)CrossRefGoogle Scholar
  12. 12.
    Pournara, I., Wernisch, L.: Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 8(61) (2007)Google Scholar
  13. 13.
    Xu, R., Wunsch, D.C.I., Frank, R.: Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4), 681–692 (2007)CrossRefGoogle Scholar
  14. 14.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from natural to artificial systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  16. 16.
    Kwon, A., Hoos, H., Ng, R.: Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19(8), 905–912 (2003)CrossRefGoogle Scholar
  17. 17.
    Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453 (1970)CrossRefGoogle Scholar
  18. 18.
    Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kyriakos Kentzoglanakis
    • 1
  • Matthew Poole
    • 1
  • Carl Adams
    • 1
  1. 1.School of ComputingUniversity of PortsmouthPortsmouthUK

Personalised recommendations