Advertisement

Ant Colony Optimization for Energy-Efficient Broadcasting in Ad-Hoc Networks

  • Hugo Hernández
  • Christian Blum
  • Guillem Francès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

In wireless ad-hoc networks, nodes are generally equipped with batteries, making energy a scarce resource. Therefore, power consumption of network operations is critical and subject to optimization. One of the fundamental problems in ad-hoc networks is broadcasting. In this work we consider the so-called minimum energy broadcast (MEB) problem, which can be stated as a combinatorial optimization problem. We develop an ant colony optimization algorithm for two scenarios: networks in which nodes are equipped with omni-directional, respectively directional, antennas. The results show that our algorithm consistently outperforms other methods for this problem.

Keywords

Multicast Tree Directional Antenna Emission Power Average Computation Time Directed Span Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapport, T.: Wireless Communications: Principles and Practices. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  2. 2.
    Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-aware wireless networking with directional antennas: the case of session-based broadcasting and multicasting. IEEE Trans. on Mobile Computing 1(3), 176–191 (2002)CrossRefGoogle Scholar
  3. 3.
    Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless networks: NP-completeness and distribution issues. In: Proc. of ACM MobiCom, pp. 172–182. ACM press, New York (2002)Google Scholar
  4. 4.
    Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-efficient broadcast and multicast trees in wireless networks. Proc. of INFOCOM 2000 2, 585–594 (2000)Google Scholar
  5. 5.
    Wan, P.J., Calinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcast routing in static ad hoc wirless networks. ACM Wireless Networks 8(6), 607–617 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of ACM MobiHoc 2002, pp. 112–122. ACM press, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Li, F., Nikolaidis, I.: On minimum-energy broadcasting in all-wireless networks. In: Proc. of IEEE LCN, pp. 14–16. IEEE press, Los Alamitos (2001)Google Scholar
  8. 8.
    Guo, S., Yang, O.: A dynamic multicast tree reconstruction algorithm for minimum-energy multicasting in wireless ad hoc networks. In: Proc. of IEEE IPCCC, pp. 637–642. IEEE press, Los Alamitos (2004)Google Scholar
  9. 9.
    Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: r-shrink: A heuristic for improving minimum power broadcast trees in wireless networks. In: Proc. of GLOBECOM 2003, pp. 523–527. IEEE press, Los Alamitos (2003)Google Scholar
  10. 10.
    Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: The minimum power broadcast problem in wireless networks: an ant colony system approach. In: Proc. of the IEEE CAS Wshp. on Wireless Communications and Networking (2002)Google Scholar
  11. 11.
    Kang, I., Poovendran, R.: Iterated local optimization for minimum energy broadcast. In: Proc. of WiOpt 2005, pp. 332–341. IEEE press, Los Alamitos (2005)Google Scholar
  12. 12.
    Al-Shihabi, S., Merz, P., Wolf, S.: Nested partitioning for the minimum energy broadcast. In: Proc. of LION 2007. Springer, Berlin (2007)Google Scholar
  13. 13.
    Wolf, S., Merz, P.: Evolutionary local search for the minimum energy broadcast problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 61–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Cartigny, J., Simplot-Ryl, D., Stojmenovic, I.: An adaptive localized scheme for energy-efficient broadcasting in ad hoc networks with directional antennas. In: Niemegeers, I.G.M.M., de Groot, S.H. (eds.) PWC 2004. LNCS, vol. 3260, pp. 399–413. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Guo, S., Yang, O.: Improving energy efficiency for multicasting in ad-hoc networks with directional antennas. In: Proc. of IEEE WiMob 2005, pp. 344–351. IEEE press, Los Alamitos (2005)Google Scholar
  16. 16.
    Guo, S., Yang, O.: Minimum-energy multicast in wireless ad hoc networks with adaptive antennas: MILP formulations and heuristic algorithms. IEEE Trans. on Mobile Computing 5(4), 333–346 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Guo, S., Yang, O.W.W.: Energy-aware multicasting in wireless ad hoc networks: A survey and discussion. Computer Communications 30, 2129–2148 (2007)CrossRefGoogle Scholar
  18. 18.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  19. 19.
    Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. on Systems, Man anc Cybernetics – Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  21. 21.
    Hernández, H., Blum, C., Francès, G.: Ant colony optimization for energy-efficient broadcasting in ad-hoc networks. Technical Report LSI-08-13, LSI, Univeristat Politècnica de Catalunya (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hugo Hernández
    • 1
  • Christian Blum
    • 1
  • Guillem Francès
    • 1
  1. 1.ALBCOM, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations