Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns

  • Robert J. Mullen
  • Dorothy Monekosso
  • Sarah Barman
  • Paolo Remagnino
  • Paul Wilkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)


This paper presents preliminary results on an investigation into using artificial swarms to extract and quantify features in digital images. An ant algorithm has been developed to automatically extract the outlines and primary venation patterns from digital images of living leaf specimens via an edge detection method. A qualitative and quantitative analysis of the results is carried out herein. The artificial swarms are shown to converge onto the edges within the leaf images and statistical accuracy, as measured against ground truth images, is shown to increase in accordance with the swarm convergence. Visual results are promising, however limitations due to background noise need to be addressed for the given application. The findings in this study present potential for increased robustness in using swarm based methods, by exploiting their stigmergic behaviour to reduce the need for parameter fine-tuning with respect to individual image characteristics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  2. 2.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperating learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  3. 3.
    Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant System for job-shop scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and Computer Science 34(1), 39–53 (1994)zbMATHGoogle Scholar
  4. 4.
    Maniezzo, V., Colorni, A., Dorigo, M.: The Ant System applied to the quadratic assignment problem. Technical Report IRIDIA/94-28, Universite Libre de Bruxelles, Belgium (1994)Google Scholar
  5. 5.
    Hickey, L.J.: Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60(1), 17–33 (1973)CrossRefGoogle Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.W.: Digital image processing, 2nd edn. Prentice Hill (2001)Google Scholar
  8. 8.
    Ouadfel, S., Batouche, M.: Unsupervised image segmentation using a colony of cooperating ants. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 109–116. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Ouadfel, S., Batouche, M.: An efficient ant algorithm for swarm-based image clustering. Journal of Computer Science 3(3), 162–167 (2007)CrossRefGoogle Scholar
  10. 10.
    Channa, A.H., Rajpoot, N.M., Rajpoot, K.M.: Texture segmentation using ant tree clustering. In: 2006 IEEE International Conference on Engineering of Intelligent Systems, pp. 1–6 (2006)Google Scholar
  11. 11.
    Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass behaviour effect study on pattern recognition. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 113–116. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Fernandes, C., Ramos, V., Rosa, A.C.: Self-regulated artificial ant colonies on digital image habitats. Int. Journal of Lateral Computing 2(1), 1–8 (2005)Google Scholar
  13. 13.
    Nezamabadi-pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algorithms. Soft Computing 10, 623–628 (2006)CrossRefGoogle Scholar
  14. 14.
    Malisia, A.R., Tizhoosh, H.R.: Image thresholding using ant colony optimization. In: CRV 2006: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 26. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  15. 15.
    Wilkin, P.: personal communication, Royal Botanic Gardens, KEW, London, England (February 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert J. Mullen
    • 1
  • Dorothy Monekosso
    • 1
  • Sarah Barman
    • 1
  • Paolo Remagnino
    • 1
  • Paul Wilkin
    • 2
  1. 1.Digital Image Research CenterKingston UniversityLondonUK
  2. 2.Royal Botanic Gardens KEWLondonUK

Personalised recommendations