Advertisement

Molecular Structure Elucidation Using Ant Colony Optimization: A Preliminary Study

  • Caroline Farrelly
  • Douglas B. Kell
  • Joshua Knowles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

Identifying the structure of unknown molecules is an important activity in the pharmaceutical industry where it underpins the production of new drugs and the analysis of complex biological samples. We present here a new method for automatically identifying the structure of an unknown molecule from its nuclear magnetic resonance (NMR) spectrum. In the technique, an ant colony optimization algorithm is used to search iteratively the highly-constrained space of feasible molecular structures, evaluating each one by reference to NMR information on known molecules stored (in a raw form) in a database. Unlike existing structure elucidation systems, ours: does not need prior training or use spectrum prediction; does not rely on expert rules; and avoids enumeration of all possible candidate structures. We describe the important elements of the system here and include results on a preliminary test set of molecules. Whilst the results are currently too limited to allow parameter studies or comparison to other methods, they nevertheless indicate the system is working acceptably and shows considerable promise.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Candidate Structure True Structure Frequency Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Aha, D.: Lazy Learning. Kluwer Academic Publishers, Norwell (1997)zbMATHGoogle Scholar
  3. 3.
    Stützle, T., Hoos, H.: MAX–MIN Ant system and local search for combinatorial optimization problems. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, 313–329 (1999)Google Scholar
  4. 4.
    Gambardella, L., Dorigo, M.: An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem. INFORMS Journal on Computing 12(3), 237–255 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
  6. 6.
    Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  7. 7.
    Farrelly, C.: From Spectrum to Structure Using Machine Learning. PhD thesis, School of Chemistry, University of Manchester, UK (2008)Google Scholar
  8. 8.
    Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    Griffiths, L., Bright, J.: Towards the automatic analysis of 1H NMR spectra: Part 3. Confirmation of postulated chemical structure. Magn. Reson. Chem. 40, 623–634 (2002)CrossRefGoogle Scholar
  11. 11.
    Carhart, R., Smith, D., Brown, H., Djerassi, C.: Applications of artificial intelligence for chemical inference. XVII. Approach to computer-assisted elucidation of molecular structure. Journal of the American Chemical Society 97(20), 5755–5762 (1975)CrossRefGoogle Scholar
  12. 12.
    Carhart, R., Smith, D., Gray, N., Nourse, J., Djerassi, C.: GENOA: A Computer Program for Structure Elucidation Utilizing Overlapping and Alternative Substructures. J. Org. Chem. 46, 1708–1718 (1981)CrossRefGoogle Scholar
  13. 13.
    Sasaki, S., Kudo, Y.: Structure elucidation system using structural information from multisources: CHEMICS. Journal of Chemical Information and Computer Sciences 25(3), 252–257 (1985)Google Scholar
  14. 14.
    Elyashberg, M., Martirosian, E., Karasev, Y., Thiele, H., Somberg, H.: X-PERT: a user-friendly expert system for molecular structure elucidation by spectral methods. Analytica Chimica Acta 337(3), 265–286 (1997)CrossRefGoogle Scholar
  15. 15.
    Elyashberg, M., Blinov, K., Williams, A., Martirosian, E., Martin, G.: Application of a New Expert System for the Structure Elucidation of Natural Products from the 1D and 2D NMR Data. J. Nat. Prod. 65(5), 693–703 (2002)CrossRefGoogle Scholar
  16. 16.
    Meiler, J., Will, M.: Genius: A genetic algorithm for automated structure elucidation from C-13 NMR spectra. Journal of the American Chemical Society 124(9), 1868–1870 (2002)CrossRefGoogle Scholar
  17. 17.
    Kell, D.: Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discovery Today 11(23-24), 1085–1092 (2006)CrossRefGoogle Scholar
  18. 18.
    Kell, D.: Metabolomic biomarkers: search, discovery and validation. Exp Rev Mol Diagn 7(4), 329–333 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Caroline Farrelly
    • 1
  • Douglas B. Kell
    • 1
  • Joshua Knowles
    • 1
  1. 1.Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations