Advertisement

Modeling Herds and Their Evolvements from Trajectory Data

  • Yan Huang
  • Cai Chen
  • Pinliang Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)

Abstract

A trajectory is the time-stamped path of a moving entity through space. Given a set of trajectories, this paper proposes new conceptual definitions for a spatio-temporal pattern named Herd and four types of herd evolvements: expand, join, shrink, and leave based on the definition of a related term flock. Herd evolvements are identified through measurements of Precision, Recall, and F-score. A graph-based representation, Herd Interaction Graph, or Herding, for herd evolvements is described and an algorithm to generate the graph is proposed and implemented in a Geographic Information System (GIS) environment. A data generator to simulate herd movements and their interactions is proposed and implemented as well. The results suggest that herds and their interactions can be effectively modeled through the proposed measurements and the herd interaction graph from trajectory data.

Keywords

Spatio-temporal Data Mining Spatial Patterns Spatial Evolvements Herd Evolvements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49–60 (1999)CrossRefGoogle Scholar
  2. 2.
    Ashbrook, Starner, D.: Learning significant locations and predicting user movement with GPS. In: Sixth International Symposium on Wearable Computers, pp. 101–108 (2002)Google Scholar
  3. 3.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 660–671. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G.: An exploratory data analysis (eda) of the paths of moving animals. Journal of Statistical Planning and Inference 122, 43–63 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential patterns. In: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 82–89 (2005)Google Scholar
  6. 6.
    Claramunt, C., Parent, C., Theriault, M.: Design Patterns for Spatio-temporal Processes. In: IFIP 2.6 Working Conference on Database Semantics,DS7 (1997)Google Scholar
  7. 7.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)Google Scholar
  8. 8.
    Frank, A., Raper, J., Cheylan, J.-P.: Life and motion of spatial socio-economic units. In: Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (2001)Google Scholar
  9. 9.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: KDD 2007: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 330–339. ACM Press, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory data. In: GIS 2006: Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, pp. 35–42. ACM Press, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Hornsby, K.: Temporal zooming. Transactions in GIS, 255–272 (2001)Google Scholar
  12. 12.
    Hornsby, K., Egenhofer, M.J.: Qualitative representation of change. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 15–33. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Hornsby, K., Egenhofer, M.J.: Shifts in detail through temporal zooming. In: DEXA Workshop, pp. 487–491 (1999)Google Scholar
  14. 14.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: International Symposium on Advances in Spatial and Temporal Databases (SSTD), pp. 364–381 (2005)Google Scholar
  15. 15.
    Laube, P., Imfeld, S.: Analyzing relative motion within groups of trackable moving point objects. In: 2nd International Conference on Geographic Information Science, pp. 132–144 (2002)Google Scholar
  16. 16.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding remo detecting relative motion patterns in geospatial lifelines. In: Developments in Spatial Data Handling, pp. 201–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 236–245. ACM Press, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Miller, J., Han, J.: Detecting outliers from large datasets. In: Geographic data mining and knowledge discovery, pp. 218–235. Taylor and Francis, Abington (2001)Google Scholar
  19. 19.
    Qu, Y., Wang, C., Wang, X.S.: Supporting fast search in time series for movement patterns in multiple scales. In: CIKM 1998: Proceedings of the seventh international conference on Information and knowledge management, pp. 251–258 (1998)Google Scholar
  20. 20.
    Sumpter, N., Bulpitt, A.J.: Learning spatio-temporal patterns for predicting object behaviour. Image Vision Comput 18(9), 697–704 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yan Huang
    • 1
  • Cai Chen
    • 2
  • Pinliang Dong
    • 2
  1. 1.Department of Computer ScienceUniversity of North TexasDentonUSA
  2. 2.Department of GeographyUniversity of North TexasDentonUSA

Personalised recommendations