Delineation of Valleys and Valley Floors

  • Ralph K. Straumann
  • Ross S. Purves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)


Methods to automatically derive landforms have typically focused on pixel-based, bottom-up approaches and most commonly on the derivation of to pographic eminences. In this paper we describe an object-based, top-down algo rithm to identify valley floors. The algorithm is based on a region growing ap proach, seeded by thalwegs with pixels added to the region according to a threshold gradient value. Since such landforms are fiat we compare the results of our algorithm for a particular valley with a number of textual sources de scribing that valley. In a further comparison, we computed a pixel-based six-fold morphometric classification for regions we classified as either being, or not being, valley floor. The regions classified as valley floor are dominated by pla nar slopes and channels, though the algorithm is robust enough to allow local convexities to be classified as within the valley floor. Future work will explore the delineation of valley sides, and thus complete valleys.


Landform geomorphometry valley valley floor delineation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maxwell, J.C.: On Hills and Dales. Philosophical Magazine (1870); reprinted In: Niven, W.D. (ed.) The Scientific Papers of James Clerk Maxwell, pp. 233–240. Dover Publications, New York (1965)Google Scholar
  2. 2.
    Fisher, P., Wood, J., Cheng, T.: Where Is Helvellyn? Fuzziness of Multi-scale Landscape Morphometry. Transactions of the Institute of British Geographers 29, 106–128 (2004)CrossRefGoogle Scholar
  3. 3.
    Chaudhry, O.Z., Mackaness, W.A.: Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis. Transactions in GIS (in press)Google Scholar
  4. 4.
    Mark, D., Sinha, G.: Ontology of landforms: Delimitation and Classification of Topographic Eminences. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 129–132. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Hugget, R.J.: Fundamentals of Geomorphology. Routledge, London (2007)Google Scholar
  6. 6.
    Whittow, J.B.: “Landform.” The Penguin Dictionary of Physical Geography. Penguin Books, London (2000)Google Scholar
  7. 7.
    Lapidus, D.F., Coates, D.R., Winstanley, I., MacDonald, J., Burton, C.: “Landform.” Collins Dictionary of Geology. HarperCollins Publishers, Glasgow (2003)Google Scholar
  8. 8.
    Blasczcinsky, J.S.: Landform Characterization with Geographic Information Systems. Photogrammetric Engineering and Remote Sensing 63, 183–191 (1997)Google Scholar
  9. 9.
    Evans, I.S.: General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. In: Chorley, R.J. (ed.) Spatial Analysis in Geomorphology, pp. 17–90. Methuen & Co. Ltd., London (1972)Google Scholar
  10. 10.
    Moore, I.D., Grayson, R.B., Ladson, A.R.: Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes 5, 3–30 (1991)CrossRefGoogle Scholar
  11. 11.
    Zevenbergen, L.W., Thorne, C.R.: Quantitative Analysis of Land Surface Topography. Earth Surface Processes and Landforms 12, 47–56 (1987)CrossRefGoogle Scholar
  12. 12.
    Kienzle, S.W.: The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives. Transactions in GIS 8, 83–111 (2004)CrossRefGoogle Scholar
  13. 13.
    Shary, P.A., Sharaya, L.S., Mitusov, A.V.: Fundamental Quantitative Methods of Land Surface Analysis. Geoderma 107, 1–32 (2002)CrossRefGoogle Scholar
  14. 14.
    Wood, J.: The Geomorphological Characterisation of Digital Elevation Models. PhD thesis, University of Leicester, UK (1996)Google Scholar
  15. 15.
    Mark, D.M.: Geomorphometric Parameters: A Review and Evaluation. Geografiska Annaler, Series A, Physical Geography 57, 165–177 (1975)CrossRefGoogle Scholar
  16. 16.
    Thompson, J.A., Bell, J.C., Butler, C.A.: Digital Elevation Model Resolution: Effects on Terrain Attribute Calculation and Quantitative Soil-Landscape Modeling. Geoderma 100, 67–89 (2001)CrossRefGoogle Scholar
  17. 17.
    Burrough, P.A., van Gaans, P.F.M., MacMillan, R.A.: High-Resolution Landform Classification Using Fuzzy k-Means. Fuzzy Sets and Systems 113, 37–52 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Beven, K.J., Kirkby, M.J.: A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrological Sciences Bulletin 24, 43–69 (1979)CrossRefGoogle Scholar
  19. 19.
    Quinn, P.F., Beven, K.J., Lamb, R.: The ln(a/tan β) Index: How to Calculate It and How to Use It within the TOPMODEL Framework. Hydrological Processes 9, 161–182 (1995)CrossRefGoogle Scholar
  20. 20.
    de Bruin, S., Stein, A.: Soil-Landscape Modelling Using Fuzzy c-Means Clustering of Attribute Data Derived from a Digital Elevation Model (DEM). Geoderma 83, 17–33 (1998)CrossRefGoogle Scholar
  21. 21.
    Burrough, P.A., Wilson, J.P., van Gaans, P.F., Hansen, A.J.: Fuzzy k-Means Classification of Topo-climatic Data as an Aid to Forest Mapping in the Greater Yellowstone Area, USA. Landscape Ecology 16, 523–546 (2001)CrossRefGoogle Scholar
  22. 22.
    Pennock, D.J., Zebarth, B.J., De Jong, E.: Landform Classification and Soil Distribution in Hummocky Terrain, Saskatchewan, Canada. Geoderma 40, 297–315 (1987)CrossRefGoogle Scholar
  23. 23.
    Ruhe, R.V.: Elements of the Soil Landscape. In: Transactions of the 7th International Congress of Soil Science, International Society of Soil Science, pp. 165–170 (1960)Google Scholar
  24. 24.
    Dikau, R.: The Application of Digital Relief Model to Landform Analysis in Geomorphology. In: Raper, J. (ed.) Three Dimensional Applications in Geographical Information Systems, pp. 51–77. Taylor & Francis, London (1989)Google Scholar
  25. 25.
    Pennock, D.J., Corre, M.D.: Development and Application of Landform Segmentation Procedures. Soil & Tillage Research 58, 151–162 (2001)CrossRefGoogle Scholar
  26. 26.
    Pennock, D.J.: Terrain Attributes, Landform Segmentation, and Soil Redistribution. Soil & Tillage Research 69, 15–26 (2003)CrossRefGoogle Scholar
  27. 27.
    Moreno, M., Levachkine, S., Torres, M., Quintero, R.: Landform Classification in Raster Geo-images. In: Sanfeliu, A., Trinidad, J.F.M., Ochoa, J.A.C. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 558–565. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Bolongaro-Crevenna, A., Torres-Rodríguez, V., Sorani, V., Frame, D., Ortiz, M.A.: Geomorphometric Analysis for Characterizing Landforms in Morelos State, Mexico. Geomorphology 67, 407–422 (2005)CrossRefGoogle Scholar
  29. 29.
    MacMillan, R.A., Pettapiece, W.W., Nolan, S., Goddard, T.W.: A Generic Procedure for Automatically Segmenting Landforms into Landform Elements Using DEMs, Heuristic Rules and Fuzzy Logic. Fuzzy Sets and Systems 113, 81–109 (2000)zbMATHCrossRefGoogle Scholar
  30. 30.
    Schmidt, J., Hewitt, A.: Fuzzy Land Element Classification from DTMs Based on Geometry and Terrain Position. Geoderma 121, 243–256 (2004)CrossRefGoogle Scholar
  31. 31.
    Lucieer, A., Stein, A.: Texture-Based Landform Segmentation of LiDAR Imagery. International Journal of Applied Earth Observation and Geoinformation 6, 261–270 (2005)CrossRefGoogle Scholar
  32. 32.
    Greatbach, I., Wood, J., Fisher, P.: A Comparison of Morphometric and Web Prominence of Mountain Features. In: Geographical Information Science Research UK (GISRUK) Conference, NUI Maynooth, Ireland, pp. 312–317 (2007)Google Scholar
  33. 33.
    Smith, B., Varzi, A.C.: Fiat and Bona Fide Boundaries. Philosophy and Phenomenological Research 60, 401–420 (2000)CrossRefGoogle Scholar
  34. 34.
    Montello, D.R., Goodchild, M.F., Gottsegen, J., Fohl, P.: Where’s Downtown? Behavioral Methods for Determining Referents of Vague Spatial Queries. Spatial Cognition & Computation 3, 185–204 (2003)CrossRefGoogle Scholar
  35. 35.
    Jones, C.B., Purves, R.S., Clough, P.D., Joho, H.: Modelling Vague Places with Knowledge from the Web. International Journal of Geographic Information Science (in press)Google Scholar
  36. 36.
  37. 37.
    USGS: SDTS – View the Standard,
  38. 38.
    ANSI NCITS 320-1998. Draft. Part 2: Spatial Features,
  39. 39.
    Bates, R.L., Jackson, J.A. (eds.): “Valley.”; “Valley floor.” Glossary of Geology. American Geological Institute, Alexandria (1990)Google Scholar
  40. 40.
    McGraw-Hill Dictionary of Earth Science. “Valley floor.” McGraw-Hill, New York (2003)Google Scholar
  41. 41.
    Tribe, A.: Automated recognition of valley heads from digital elevation models. Earth Surface Processes and Landforms 16, 33–49 (1991)CrossRefGoogle Scholar
  42. 42.
    Tribe, A.: Problems in automated recognition of valley features from digital elevation models and a new method toward their resolution. Earth Surface Processes and Landforms 17, 437–454 (1992)CrossRefGoogle Scholar
  43. 43.
    Carroll, R.: Automated gully delineation using digital elevation data. ACSM-ASP 49th Annual Meeting, Technical Papers, Washington D.C., USA, pp. 144–151 (1983)Google Scholar
  44. 44.
    Miliaresis, G.C., Argialas, D.P.: Segmentation of Physiographic Features from the Global Digital Elevation Model/GTOPO30. Computers & Geosciences 25, 715–728 (1999)CrossRefGoogle Scholar
  45. 45.
    Miliaresis, G.C., Argialas, D.P.: Quantitative Representation of Mountain Objects Extracted from the Global Digital Elevation Model (GTOPO30). International Journal of Remote Sensing 23, 949–964 (2002)CrossRefGoogle Scholar
  46. 46.
    Miliaresis, G.C.: Geomorphometric Mapping of Asia Minor from GLOBE Digital Elevation Model. Geografiska Annaler, Series A, Physical Geography 88, 209–221 (2006)Google Scholar
  47. 47.
    Chorowicz, J., Ichoku, C., Riazanoff, S., Kim, Y., Cervelle, B.: A combined algorithm for automated drainage network extraction. Water Resources Research 28, 1293–1302 (1992)CrossRefGoogle Scholar
  48. 48.
    Sagar, B.S.D., Murthy, M.B.R., Rao, C.B., Raj, B.: Morphological approach to extract ridge and valley connectivity networks from Digital Elevation Models. International Journal of Remote Sensing 24, 573–581 (2003)CrossRefGoogle Scholar
  49. 49.
    Cronin, T.: Classifying hills and valleys in digitized terrain. Photogrammetric Engineering and Remote Sensing 66, 1129–1137 (2000)Google Scholar
  50. 50.
    Gallant, J.C., Dowling, T.I.: A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39, 1347 (2003)CrossRefGoogle Scholar
  51. 51.
  52. 52.
    Verkehrsverband Region Gürbetal,
  53. 53.
    Internet Archive,
  54. 54.
    Demoulin, A., Bovy, B., Rixhon, G., Cornet, Y.: An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. Geomorphology 91, 51–64 (2007)CrossRefGoogle Scholar
  55. 55.
    Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E.: Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT),
  56. 56.
    Wikipedia, D.E.: “Gürbetal”,
  57. 57.
  58. 58.
    Geoinformation Office of the Canton of Bern,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ralph K. Straumann
    • 1
  • Ross S. Purves
    • 1
  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland

Personalised recommendations