Advertisement

Refining Topological Relations between Regions Considering Their Shapes

  • Roland Billen
  • Yohei Kurata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)

Abstract

Topological relations are sometimes insufficient for differentiating spatial configurations of two objects with critical difference in their connection styles. In this paper, we present the projective 9  +  -intersection model, which refines topological relations into projective binary relations by considering projective properties of the objects’ shapes. This is indeed a reformulation of projective concepts of the Dimensional Model within the framework of the 9  +  -intersection. Thirty projective binary relationsare established between two regions in R 2, one of which has a multi-order boundary (region + mob). These relations are identified computationally by applying to all theoretical relations the existing constraints for topological region-region relations and seven new specific constraints. After defining the concept of continuous neighbours between two projective binary relations, a conceptual neighbourhood graph of the 30 projective region + mob-region relations is developed.

Keywords

Spatial Relation Spatial Object Topological Relation Projective Relation Supporting Hyperplane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5, 161–174 (1991)CrossRefGoogle Scholar
  2. 2.
    Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases. In: Egenhofer, M., Herring, J., Smith, T., Park, K. (eds.): NCGIA Technical Reports 91-7. National Center for Geographic Information and Analysis, Santa Barbara, CA, USA (1991)Google Scholar
  3. 3.
    Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swarout, W. (eds.) 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  4. 4.
    Egenhofer, M., Al-Taha, K.: Reasoning about Gradual Changes of Topological Relationships. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Clementini, E., Di Felice, P., van Oosterom, P.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: Abel, D., Ooi, B.C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5, 133–149 (1994)CrossRefGoogle Scholar
  7. 7.
    Egenhofer, M., Franzosa, R.: On the Equivalence of Topological Relations. International Journal of Geographical Information Systems 9, 133–152 (1995)CrossRefGoogle Scholar
  8. 8.
    Clementini, E., Di Felice, P.: Topological Invariants for Lines. IEEE Transactions on Knowledge and Data Engineering 10, 38–54 (1998)CrossRefGoogle Scholar
  9. 9.
    Hornsby, K., Egenhofer, M., Hayes, P.: Modeling Cyclic Change. In: Chen, P., Embley, D., Kouloumdjian, J., Liddle, S., Roddick, J. (eds.) TABLEAUX 1997. LNCS, vol. 1227, pp. 98–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Zlatanova, S.: On 3D Topological Relationships. In: 11th International Workshop on Database and Expert Systems Applications, pp. 913–924. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  11. 11.
    Egenhofer, M.: Spherical Topological Relations. Journal on Data Semantics III, 25–49 (2005)Google Scholar
  12. 12.
    Schneider, M., Behr, T.: Topological Relationships between Complex Spatial Objects. ACM Transactions on Database Systems 31, 39–81 (2006)CrossRefGoogle Scholar
  13. 13.
    Nedas, K., Egenhofer, M., Wilmsen, D.: Metric Details of Topological Line-Line Relations. International Journal of Geographical Information Science 21, 21–48 (2007)CrossRefGoogle Scholar
  14. 14.
    Kurata, Y., Egenhofer, M.: The Head-Body-Tail Intersection for Spatial Relations between Directed Line Segments. In: Raubal, M., Miller, H., Frank, A., Goodchild, M. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 269–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kurata, Y., Egenhofer, M.: The 9+-Intersection for Topological Relations between a Directed Line Segment and a Region. In: Gottfried, B. (ed.) 1st International Symposium for Behavioral Monitoring and Interpretation, pp. 62–76 (2007)Google Scholar
  16. 16.
    OpenGIS Consortium: OpenGIS Simple Features Specification for SQL (1998)Google Scholar
  17. 17.
    Frank, A.: Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 3, 343–371 (1992)CrossRefGoogle Scholar
  18. 18.
    Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. In: Frank, A., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Schlieder, C.: Reasoning about Ordering. In: Frank, A., Kuhn, W. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Clementini, E., Billen, R.: Modeling and Computing Ternary Projective Relations between Regions. IEEE Transactions on Knowledge and Data Engineering 18, 799–814 (2006)CrossRefGoogle Scholar
  21. 21.
    Billen, R.: Nouvelle Perception De La Spatialité Des Objets Et De Leurs Relations. Développment D’une Modélisation Tridimensionnelle De L’information Spatiale. Department of Geography, Ph.D. Thesis. University of Liège, Liège, Belgium (2002)Google Scholar
  22. 22.
    Billen, R., Zlatanova, S., Mathonet, P., Boniver, F.: The Dimensional Model: A Framework to Distinguish Spatial Relationships. In: Richardson, D., van Oosterom, P. (eds.) Advances in spatial data handling: 10th International Symposium on Spatial Data Handling, pp. 285–298. Springer, Heidelberg (2002)Google Scholar
  23. 23.
    Billen, R., Clementini, E.: Etude Des Caractéristiques Projectives Des Objets Spatiaux Et De Leurs Relations. Revue Internationale de Géomatique 14, 145–165 (2004)CrossRefGoogle Scholar
  24. 24.
    Berger, M.: Géométrie 3 : Convexes Et Polytopes, Polyèdres Réguliers, Aires Et Volumes. Cedic/Fernand Nathan, Paris (1978) Google Scholar
  25. 25.
    Alexandroff, P.: Elementary Concepts of Topology. Dover Publications, Mineola (1961)zbMATHGoogle Scholar
  26. 26.
    Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54, 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Galton, A.: Lines of Sight. In: AI and Cognitive Science 1994, pp. 103–113. Dublin University Press (1994)Google Scholar
  28. 28.
    Egenhofer, M., Mark, D.: Modeling Conceptual Neighborhoods of Topological Line-Region Relations. International Journal of Geographical Information Systems 9, 555–565 (1995)CrossRefGoogle Scholar
  29. 29.
    Gottfried, B.: Reasoning about Intervals in Two Dimensions. In: Thissenm, W., Pantic, M., Ludema, M. (eds.) IEEE International Conference on Systems, Man and Cybernetics, pp. 5324–5332 (2004)Google Scholar
  30. 30.
    Van de Weghe, N., De Maeyer, P.: Conceptual Neighbourhood Diagrams for Representing Moving Objects. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Moratz, R., Renz, J., Wolter, D.: Qualitative Spatial Reasoning about Line Segments. In: Horn, W. (ed.) 14th European Conference on Artificial Intelligence, pp. 234–238. IOS Press, Amsterdam (2000)Google Scholar
  32. 32.
    Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A Qualitative Trajectory Calculus and the Composition of Its Relations. In: Rodriguez, A., Cruz, I., Egenhofer, M., Levashkin, S. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roland Billen
    • 1
  • Yohei Kurata
    • 2
  1. 1.Geomatics UnitUniversity of LiegeLiegeBelgium
  2. 2.SFB/TR 8 Spatial CognitionUniversität BremenBremenGermany

Personalised recommendations