Advertisement

Road Networks and Their Incomplete Representation by Network Data Models

  • Simon Scheider
  • Werner Kuhn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)

Abstract

Road networks, roads, and junctions are examples of natural language terms whose semantics can be described by affordances of their physical referents. In order to define affordances in such a way that they can be used for classifying and describing instances in a geographic database, one has to deal with the problems of informational incompleteness and limited definability. In this paper, we propose an affordance-based theory of channel networks, based on the work of Hayes [4], as a means to derive necessary conditions for database representations of road networks. By exploring this example, we show that affordance-based logical definitions are a convenient method to capture essential properties of physical objects usually not present in their database representation, but appropriate to explain and define its structure.

Keywords

Ontology Road network Affordance-based theory Naïve physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)Google Scholar
  2. 2.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  3. 3.
    Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Formal Ontology in Information Systems, FOIS 1998, Trento, pp. 3–15 (1998)Google Scholar
  4. 4.
    Hayes, P.J.: Naïve Physics I: Ontology for Liquids. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Commonsense World. Ablex Series in Artificial Intelligence, Norwood (1988)Google Scholar
  5. 5.
    Hayes, P.J.: The Second Naive Physics Manifesto. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Commonsense World, Norwood. Ablex Series in Artificial Intelligence (1988)Google Scholar
  6. 6.
    Israel, D.: A Short Companion to the Naïve Physics Manifesto. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Commonsense World, Ablex Series in Artificial Intelligence, Norwood (1988)Google Scholar
  7. 7.
    Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.: An Affordance-Based Model of Place in GIS. In: Poiker, T., Chrisman, N. (eds.) 8th Int. Symposium on Spatial Data Handling, SDH 1998, Vancouver, pp. 98–109 (1998)Google Scholar
  8. 8.
    Kuhn, W.: An Image-Schematic Account of Spatial Categories. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 152–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lee, J.M.: Introduction to Topological Manifolds. Graduate Texts in Mathematics 202. Springer, New York (2000)zbMATHGoogle Scholar
  10. 10.
    Scheider, S., Schulz, D.: Specifying Essential Features of Street Networks. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 169–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Sowa, J.: Knowledge Representation. Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing (1999)Google Scholar
  12. 12.
    Raubal, M., Worboys, M.: A Formal Model of the Process of Wayfinding in Built Environments. In: Freksa, C., Mark, D. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–399. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Van de Weghe, N., Cohn, A.G., Bogaert, P., De Maeyer, P.: Representation of Moving Objects along a Road Network. In: Proc. 12th Int. Conf. on Geoinformatics, pp. 187–194. University of Gävle (2004)Google Scholar
  14. 14.
    Winter, S.: Route specifications with a linear dual graph. In: Richardson, D. (ed.) Advances in Spatial Data Handling: Proc. 10th Int. Symp. Spatial Data Handling (SDH 2002), pp. 329–338. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simon Scheider
    • 1
  • Werner Kuhn
    • 2
  1. 1.Fraunhofer Institut für Intelligente Analyse und Informationssysteme (IAIS)Schloss BirlinghovenSankt AugustinGermany
  2. 2.Institute for Geoinformatics (ifgi)University of MünsterMünsterGermany

Personalised recommendations