Advertisement

Reasoning on Spatial Relations between Entity Classes

  • Stephan Mäs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)

Abstract

The facilitation of interoperability requires a clear distinction if a relation refers to classes of individuals or to specific instances, in particular when it comes to the logical properties of the involved relations. Class relations are defined whenever the semantics of entire classes are described, independently of single instances. Typical examples are spatial semantic integrity constraints or ontologies of entity classes. The paper continues research on spatial class relations by deepening the analysis of the reasoning properties of class relations. The work is based on a set of 17 abstract class relations defined in [11]. The paper provides a complete composition table for the 17 abstract class relations and redefines the concept of conceptual neighbourhood for class relations. This approach can be used to find conflicts and redundancies in sets of semantic integrity constraints or other applications of spatial class relations.

Keywords

Class Level Relations Spatial Relations Reasoning Compositions Conceptual Neighbourhood Constraint Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donnelly, M., Bittner, T.: Spatial Relations Between Classes of Individuals. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 182–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases. Technical Report, Department of Surveying Engineering. University of Maine, Orono, ME (1991)Google Scholar
  3. 3.
    Egenhofer, M., Al-Taha, K.K.: Reasoning about Gradual Changes of Topological Relationships. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5(2), 133–149 (1994)CrossRefGoogle Scholar
  5. 5.
    Egenhofer, M., Mark, D.: Modeling Conceptual Neighborhoods of Topological LineRegion Relations. International Journal of Geographical Information Systems 9, 555–565 (1995)CrossRefGoogle Scholar
  6. 6.
    Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  7. 7.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grigni, M., Papadias, D., Papadimitriou, C.: Topological inference. In: Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI), pp. 901–906 (1995)Google Scholar
  9. 9.
    Hernandez, D.: Qualitative Representation of Spatial Knowledge. In: Hernández, D. (ed.) Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Maddux, R.: Some varieties containing relation algebras. Transactions of the American Mathematical Society 272(2), 501–526 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mäs, S.: Reasoning on Spatial Semantic Integrity Constraints. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 285–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Tarski, A.: On the Calculus of Relations. The Journal of Symbolic Logic 6(3), 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stephan Mäs
    • 1
  1. 1.AGIS - Arbeitsgemeinschaft GISUniversity of the Bundeswehr MunichNeubibergGermany

Personalised recommendations