Geosensor Data Abstraction for Environmental Monitoring Application

  • Young Jin Jung
  • Silvia Nittel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)


Environmental observation applications are designed for monitoring phenomena using heterogeneous sensor data types and for providing derived and often integrated information. To effectively handle such a large variety of different sensors, both in scale and type and data volume, we propose a geosensor abstraction for large-scale geosensor networks. Our SGSA(Slope Grid for Sensor Data Abstraction) represents collected data in single grid-based layers, and allows for summarizing the measured data in various integrated grid layers. Within each cell, a slope vector is used to represents the trend of the observed sensor data. This slope is used as a simplifying factor for processing queries over several sensor types. To handle dynamic sensor data, the proposed abstraction model also supports rapid data update by using a mapping table. This model can be utilized as a data representation model in various geosensor network applications.


Sensor data abstraction Geosensor network Slope grid GIS  Surface model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elson, J., Estrin, D.: Sensor networks: a bridge to the physical world. Wireless Sensor Networks, 3–20 (2004)Google Scholar
  2. 2.
    Nittel, S., Stefanidis, A.: GeoSensor Networks and Virtual GeoReality. GeoSensors Networks 296 (2005)Google Scholar
  3. 3.
    Martinez, K., Hart, J.K., Ong, R.: Environmental Sensor Networks. IEEE Computer 37(8), 50–56 (2004)Google Scholar
  4. 4.
    Chong, C.Y., Kumar, S.P.: Sensor Networks: Evolution, Opportunities, and Challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)CrossRefGoogle Scholar
  5. 5.
    Lopez, M., Berry, J.K.: Use Surface Area for Realistic Calculations. GeoWorld, pp. 22-23 (2002)Google Scholar
  6. 6.
    Xu, N.: A Survey of Sensor Network Applications. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  7. 7.
    Ilka, A.R., Gilberto, C., Renato, A., Antônio, M.V.M.: Data-Aware Clustering for Geosensor Networks Data Collection. In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, INPE, pp. 6059–6066 (2007)Google Scholar
  8. 8.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sensor Networks for Habitat Monitoring. In: ACM International Workshop on Wireless Sensor Networks and Applications, EUA, pp. 88–97 (2002)Google Scholar
  9. 9.
    Milburn, H.B., Makamua, A.I., Gonzalez, F.I.: Real-Time Tsunami Reporting from the Deep Ocean. In: OCEANS 1996, MTS/IEEE conference, vol. 1, pp. 390–394 (1996)Google Scholar
  10. 10.
  11. 11.
    Jung, Y.J., Lee, Y.K., Lee, D.G., Park, M., Ryu, K.H., Kim, H.C., Kim, K.O.: A Framework of In-situ Sensor Data Processing System for Context Awareness. In: ICIC, pp. 124-129 (2006)Google Scholar
  12. 12.
    Biagioni, E., Bridges, K.: The application of remote sensor technology to assist the recovery of rare and endangered species. Special issue on Distributed Sensor Networks for the International Journal of High Performance Computing Applications 16(3) (2002)Google Scholar
  13. 13.
    Hart, J.K., Rose, J.: Approaches to the study of glacier bed deformation. Quaternary International 86, 45–58 (2001)CrossRefGoogle Scholar
  14. 14.
    Delaunay, B.: Sur la sphère vide, Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)Google Scholar
  15. 15.
    Generic Mapping tools,
  16. 16.
    Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate Data Collection in Sensor Networks using Probabilistic Models. In: International Conference on Data Engineering, p. 48 (2006)Google Scholar
  17. 17.
    Tulone, D., Madden, S.: PAQ: Time Series Forecasting For Approximate Query Answering In Sensor Networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Operating Systems Review, 31–46 (2002)Google Scholar
  19. 19.
    Goldin, D.: Faster In-Network Evaluation of Spatial Aggregation in Sensor Networks. In: Int’l IEEE Conference On Data Engineering, p. 148 (2006)Google Scholar
  20. 20.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases with application to GIS. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  21. 21.
    Choi, W.: Adaptive cell-based index for moving objects. Data & Knowledge Engineering archive 48(1), 75–101 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Young Jin Jung
    • 1
  • Silvia Nittel
    • 1
  1. 1.Spatial Information and EngineeringUniversity of MaineUSA

Personalised recommendations