Advertisement

Similarity-Based Information Retrieval and Its Role within Spatial Data Infrastructures

  • Krzysztof Janowicz
  • Marc Wilkes
  • Michael Lutz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)

Abstract

While similarity has gained in importance in research about information retrieval on the (geospatial) semantic Web, information retrieval paradigms and their integration into existing spatial data infrastructures have not been examined in detail so far. In this paper, intensional and extensional paradigms for similarity-based information retrieval are introduced. The differences between these paradigms with respect to the query and results are pointed out. Web user interfaces implementing two of these paradigms are presented, and steps towards the integration of the SIM-DL similarity theory into a spatial data infrastructure are discussed. Remaining difficulties are highlighted and directions of further work are given.

Keywords

Description Logic Target Concept Reference Individual Spatial Data Infrastructure Open Geospatial Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lutz, M., Klien, E.: Ontology-based retrieval of geographic information. International Journal of Geographical Information Science 20(3), 233–260 (2006)CrossRefGoogle Scholar
  2. 2.
    Stoimenov, L., Djordjevic-Kajan, S.: An architecture for interoperable gis use in a local community environment. Computers & Geosciences 31, 211–220 (2005)CrossRefGoogle Scholar
  3. 3.
    Möller, R., Haarslev, V., Neumann, B.: Semantics-based information retrieval. In: Proc. IT&KNOWS 1998: International Conference on Information Technology and Knowledge Systems, Vienna, Budapest, 31. August- 4. September, pp. 49–56 (1998)Google Scholar
  4. 4.
    Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  5. 5.
    d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: CILC 2005, Convegno Italiano di Logica Computazionale, Rome, Italy (2005)Google Scholar
  6. 6.
    Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the description logic \(\cal A\!L\!C\!N\!R\) in geographic information retrieval. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Janowicz, K., Keßler, C., Schwarz, M., Wilkes, M., Panov, I., Espeter, M., Baeumer, B.: Algorithm, Implementation and Application of the SIM-DL Similarity Server. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 128–145. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Araújo, R., Pinto, H.S.: Towards semantics-based ontology similarity. In: Shvaiko, P., Euzenat, J., Giunchiglia, F., He, B. (eds.) Proceedings of the Workshop on Ontology Matching (OM2007) at ISWC/ASWC2007, Busan, South Korea (2007)Google Scholar
  9. 9.
    Nebert, D.D.: Developing spatial data infrastructures: The SDI cookbook (2004), http://www.gsdi.org/docs2004/Cookbook/cookbookV2.0.pdf
  10. 10.
    McKee, L.: Who wants a GDI?, pp. 13–24. Oxford University Press, Oxford (2000)Google Scholar
  11. 11.
    Bernard, L., Kanellopoulos, I., Annoni, A., Smits, P.: The european geoportal - one step towards the establishment of a european spatial data infrastructure. Computers, Environment and Urban Systems 29, 15–31 (2005)Google Scholar
  12. 12.
    European Commission: Spatial data infrastructures in europe, state of play spring 2005: Summary report of activity 5 of a study commissioned by the ec (eurostat & dgenv) in the framework of the inspire initiative. Technical report, European Commission, Brussels (2005)Google Scholar
  13. 13.
    ISO: ISO 19110:2005 geographic information – methodology for feature cataloguing. International standard, ISO TC 211 (2005)Google Scholar
  14. 14.
    OGC: Feature type catalogue extension package for ebRIM (ISO/TS 15000-3) profile of CSW 2.0. Discussion Paper OGC 07 172r1, Open Geospatial Consortium Inc. (2007)Google Scholar
  15. 15.
    Goldstone, R.L., Son, J.: Similarity. In: Holyoak, K., Morrison, R. (eds.) Cambridge Handbook of Thinking and Reasoning. Cambridge University Press, Cambridge (2005)Google Scholar
  16. 16.
    Medin, D., Goldstone, R., Gentner, D.: Respects for similarity. Psychological Review 100(2), 254–278 (1993)CrossRefGoogle Scholar
  17. 17.
    Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  18. 18.
    Janowicz, K.: Kinds of contexts and their impact on semantic similarity measurement. In: 5th IEEE Workshop on Context Modeling and Reasoning (CoMoRea 2008) at the 6th IEEE International Conference on Pervasive Computing and Communication (PerCom 2008), Hong Kong. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  19. 19.
    Keßler, C., Raubal, M., Janowicz, K.: The effect of context on semantic similarity measurement. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1274–1284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Frank, A.U.: Similarity measures for semantics: What is observed? In: COSIT 2007 Workshop on Semantic Similarity Measurement and Geospatial Applications, Melbourne, Australia (2007)Google Scholar
  21. 21.
    Rodríguez, A., Egenhofer, M.: Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  22. 22.
    Raubal, M.: Formalizing conceptual spaces. In: Varzi, A., Vieu, L. (eds.) Formal Ontology in Information Systems, Proceedings of the Third International Conference (FOIS 2004). Frontiers in Artificial Intelligence and Applications, vol. 114, pp. 153–164. IOS Press, Amsterdam (2004)Google Scholar
  23. 23.
    Li, B., Fonseca, F.: Tdd - a comprehensive model for qualitative spatial similarity assessment. Spatial Cognition and Computation 6(1), 31–62 (2006)CrossRefGoogle Scholar
  24. 24.
    Nedas, K., Egenhofer, M.: Spatial similarity queries with logical operators. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 430–448. Springer, Heidelberg (2003)Google Scholar
  25. 25.
    Gahegan, M., Agrawal, R., Banchuen, T., DiBiase, D.: Building rich, semantic descriptions of learning activities to facilitate reuse in digital libraries. International Journal on Digital Libraries 7(1), 81–97 (2007)CrossRefGoogle Scholar
  26. 26.
    Horrocks, I.: Implementation and optimization techniques. In: The description logic handbook: theory, implementation, and applications, pp. 306–346. Cambridge University Press, Cambridge (2003)Google Scholar
  27. 27.
    Wilkes, M., Janowicz, K.: A brief intro to the sim-dl dig extension. Technical report, Institute for Geoinformatics, University of Münster, Germany (2008)Google Scholar
  28. 28.
    Barsalou, L.: Ad hoc categories. Memory & Cognition 11, 211–227 (1983)Google Scholar
  29. 29.
    Barsalou, L.: Intraconcept similarity and its implications for interconcept similarity. In: Similarity and analogical reasoning, pp. 76–121. Cambridge University Press, Cambridge (1989)Google Scholar
  30. 30.
    Janowicz, K., Keßler, C., Panov, I., Wilkes, M., Espeter, M., Schwarz, M.: A study on the cognitive plausibility of SIM-DL similarity rankings for geographic feature types. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds.) 11th AGILE International Conference on Geographic Information Science (AGILE 2008), Girona, Spain, May 5-8, 2008. Lecture Notes in Geoinformation and Cartography, pp. 115–133. Springer, Heidelberg (2008)Google Scholar
  31. 31.
    Cross, V., Sudkamp, T.: Similarity and Computability in Fuzzy Set Theory: Assessments and Applications. Studies in Fuzziness and Soft Computing, vol. 93. Physica-Verlag (2002)Google Scholar
  32. 32.
    Lacasta, J., Nogueras-Iso, J., Béjar, R., Muro-Medrano, P.R., Zarazaga-Soria, F.J.: A web ontology service to facilitate interoperability within a spatial data infrastructure: Applicability to discovery. Data & Knowledge Engineering 63(3), 945–969 (2007)CrossRefGoogle Scholar
  33. 33.
    ISO: ISO 19119:2005 geographic information - services. International standard, ISO TC 211 (2005)Google Scholar
  34. 34.
    Klien, E.: A rule-based strategy for the semantic annotation of geodata. Transactions in GIS, Special Issue on the Geospatial Semantic Web 11(3), 437–452 (2007)Google Scholar
  35. 35.
    Janowicz, K., Keßler, C.: The role of ontology in improving gazetteer interaction. International Journal of Geographical Information Science (IJGIS) 10 (forthcoming, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Krzysztof Janowicz
    • 1
  • Marc Wilkes
    • 1
  • Michael Lutz
    • 2
  1. 1.Institute for GeoinformaticsUniversity of MuensterGermany
  2. 2.Institute for Environment and SustainabilityEuropean Commission – Joint Research CentreIspraItaly

Personalised recommendations