Query Responsive Index Structures

  • Ludger Becker
  • Hannes Partzsch
  • Jan Vahrenhold
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5266)


In this paper, we generalize the notion of self-adapting one-dimensional index structures to a wide class of spatial index structures. The resulting query responsive index structures can adapt their structure to the users’ query pattern and thus have the potential to improve the response time in practice. We outline two general approaches to providing query responsiveness and present the results in terms of the well-known R ∗ -tree. Our experiments show that depending on the query pattern significant improvements can be obtained in practice.


Data Object Index Structure Large Data Base Query Performance Query Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.J.: Box-trees and R-trees with near-optimal query time. Discrete & Computational Geometry 28(3), 291–312 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Albers, S., Karpinski, M.: Randomized splay-trees. Information Processing Letters 81(4), 213–221 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A., Woeginger, G.J. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Arge, L.A., Barve, R.D., Hutchinson, D., Procopiuc, O., Toma, L.I., Vengroff, D.E., Wickremesinghe, R.: TPIE user manual and reference. Duke University, North Carolina (2002),
  5. 5.
    Arge, L.A., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree: A practically efficient and worst-case optimal R-tree. In: Weikum, G., König, A.C., Deßloch, S. (eds.) Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 347–358. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Arge, L.A., Hinrichs, K.H., Vahrenhold, J., Vitter, J.S.: Efficient bulk operations on dynamic R-trees. Algorithmica 33(1), 104–128 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arge, L.A., Procopiuc, O., Ramaswamy, S., Suel, T., Vahrenhold, J., Vitter, J.S.: A unified approach for indexed and non-indexed spatial joins. In: Zaniolo, C., Lockemann, P.C., Scholl, M.H., Grust, T. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 413–429. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R ∗ -tree: An efficient and robust access method for points and rectangles. In: Garcia-Molina, H., Jagadish, H.V. (eds.) Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data. SIGMOD Record, vol. 19.2, pp. 322–331. ACM Press, New York (1990)CrossRefGoogle Scholar
  9. 9.
    Bell, J., Gupta, G.: An evaluation of self-adjusting binary search tree techniques. Software – Practice and Experience 23(4), 369–382 (1993)CrossRefGoogle Scholar
  10. 10.
    Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: An index structure for high-dimensional data. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB 1996: Proceedings of the 22nd International Conference on Very Large Data Bases, pp. 28–39. Morgan Kaufmann, San Francisco (1996)Google Scholar
  11. 11.
    Bitner, J.R.: Heuristics that dynamically organize data structures. SIAM Journal on Computing 8(1), 82–110 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Choubey, R., Chen, L., Rundensteiner, E.A.: In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999. LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Cobb, M., Chung, M., Shaw, K., Arctur, D.: A self-adjusting indexing structure for spatial data. In: Proceedings of the 1995 ASPRS GIS/LIS Conference and Exhibition, vol. I, pp. 182–192 (1995)Google Scholar
  14. 14.
    Fürer, M.: Randomized splay trees. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 903–904. Association for Computing Machinery (1999)Google Scholar
  15. 15.
    García, Y.J., López, M.A., Leutenegger, S.T.: On optimal node splitting for R-trees. In: Gupta, A., Shmueli, O., Widom, J. (eds.) VLDB 1998: Proceedings of the 24th International Conference on Very Large Data Bases, pp. 334–344. Morgan Kaufmann, San Francisco (1998)Google Scholar
  16. 16.
    Greene, D.: An implementation and performance analysis of spatial data access methods. In: Proceedings of the Fifth International Conference on Data Engineering, pp. 606–615. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  17. 17.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Yormark, B. (ed.) SIGMOD 1984, Proceedings of Annual Meeting, pp. 47–57. ACM Press, New York (1984)CrossRefGoogle Scholar
  18. 18.
    Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree using fractals. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), pp. 500–509. Morgan Kaufmann, San Francisco (1994)Google Scholar
  19. 19.
    Kamel, I., Khalil, M., Kouramajian, V.: Bulk insertion in dynamic R-trees. In: Kraak, M., Molenaar, M. (eds.) Proceedings of the Seventh International Symposium on Spatial Data Handling (SDH 1996), pp. 3B.31–3B.42 (1996)Google Scholar
  20. 20.
    Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lomet, D.B.: Grow and post index trees: Role, techniques and future potential. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 183–206. Springer, Heidelberg (1991)Google Scholar
  23. 23.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-trees: Theory and Applications. Springer, Berlin (2005)Google Scholar
  24. 24.
    Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ross, K.A., Sitzmann, I., Stuckey, P.J.: Cost-based unbalanced R-trees. In: Proceedings of the 13th International Conference on Scientific and Statistical Database Management, pp. 202–213. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  26. 26.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. In: The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling.Morgan Kaufmann, San Francisco (2005)Google Scholar
  27. 27.
    Sellis, T., Roussopoulos, N., Faloutsos, C.: The R + -tree: A dynamic index for multi-dimensional objects. In: Stocker, P.M., Kent, W., Hammersley, P. (eds.) 13th International Conference on Very Large Data Bases, pp. 507–518. Morgan Kaufmann, San Francisco (1987)Google Scholar
  28. 28.
    Sleator, D.D.K., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tao, Y., Papadias, D.: Adaptive index structures. In: CAiSE 2002 and VLDB 2002, pp. 418–429. Morgan Kaufmann, San Francisco (2002)CrossRefGoogle Scholar
  30. 30.
    Theodoridis, Y.: The R-tree-portal (2003),
  31. 31.
    van den Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) VLDB 2001: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 461–470. Morgan Kaufmann, San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ludger Becker
    • 1
  • Hannes Partzsch
    • 1
  • Jan Vahrenhold
    • 2
  1. 1.Fachbereich Mathematik und Informatik, Institut für InformatikWestfälische Wilhelms-Universität MünsterMünster
  2. 2.Fakultät für Informatik, Informatik XITechnische Universität DortmundDortmund

Personalised recommendations