Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

  • 1667 Accesses

Abstract

Nonnegative Tensor Factorization (NTF) is an emerging technique in multidimensional signal analysis and it can be used to find parts-based representations of high-dimensional data. In many applications such as multichannel spectrogram processing or multiarray spectra analysis, the unknown features have locally smooth temporal or spatial structure. In this paper, we incorporate to an objective function in NTF additional smoothness constrains that considerably improve the unknown features. In our approach, we propose to use the Markov Random Field (MRF) model that is commonly-used in tomographic image reconstruction to model local smoothness properties of 2D reconstructed images. We extend this model to multidimensional case whereby smoothness can be enforced in all dimensions of a multi-dimensional array. We analyze different clique energy functions that are a subject to MRF. Some numerical results performed on a multidimensional image dataset are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: Proc. of the 22th International Conference on Machine Learning, Bonn, Germany (2005)

    Google Scholar 

  2. Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)

    Google Scholar 

  3. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  4. Bader, B.W., Kolda, T.G.: Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32, 635–653 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.I.: Novel multi-layer nonnegative tensor factorization with sparsity constraints. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 271–280. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Nonnegative tensor factorization using Alpha and Beta divergencies. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, vol. III, pp. 1393–1396 (2007)

    Google Scholar 

  7. Zdunek, R., Cichocki, A.: Gibbs regularized nonnegative matrix factorization for blind separation of locally smooth signals. In: 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2007), Tokushima, Japan, pp. 317–320 (2007)

    Google Scholar 

  8. Zdunek, R., Cichocki, A.: Blind image separation using nonnegative matrix factorization with Gibbs smoothing. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 519–528. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada, pp. 283–290 (2005)

    Google Scholar 

  10. Cichocki, A., Zdunek, R., Amari, S.: Csiszar’s divergences for non-negative matrix factorization: Family of new algorithms. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Kompass, R.: A generalized divergence measure for nonnegative matrix factorization. Neural Computation 19, 780–791 (2006)

    Article  MathSciNet  Google Scholar 

  12. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 721–741 (1984)

    Article  Google Scholar 

  13. Besag, J.: Toward Bayesian image analysis. J. Appl. Stat. 16, 395–407 (1989)

    Article  Google Scholar 

  14. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Transactions on Medical Imaging 8, 194–202 (1989)

    Article  Google Scholar 

  15. Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. LII-4, 5–21 (1987)

    MathSciNet  Google Scholar 

  16. Geman, S., Reynolds, G.: Constrained parameters and the recovery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  17. Stevenson, R., Delp, E.: Fitting curves with discontinuities. In: Proc. 1st Int. Workshop on Robust Computer Vision, Seattle, Washington, USA (1990)

    Google Scholar 

  18. Green, P.J.: Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans. Medical Imaging 9, 84–93 (1990)

    Article  Google Scholar 

  19. Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comp. Assisted Tomo. 8, 306–316 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zdunek, R., Rutkowski, T.M. (2008). Nonnegative Tensor Factorization with Smoothness Constraints. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics