Skip to main content

Biomechanics of Spore Release in Phytopathogens

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

  • 3065 Accesses

Abstract

Movement is one of the defining characteristics of living organisms. Contrary to common perceptions, fungi show a remarkable range of motion. Motion inside fungal cells, including mass flow of cytoplasm, was first observed by Antonie van Leewenhoek and influenced the eighteenth-century view of fungi as an eccentric branch of the animal kingdom (Ainsworth 1976). This flow of cytoplasm accompanies the extension of hyphae, and there are a number of similarities between this growth process and amoeboid locomotion (Heath and Steinberg 1999). Faster movements include invertebrate capture by constricting rings and microscopic harpoons (Müller 1958; Beakes and Glocking 1998) and a series of spectacular mechanisms that launch fungal spores into air (Ingold 1971). Spore discharge and dispersal are related and it is important to distinguish between them. Discharge refers to the mechanical process that separates the spore, or sporangium, from its parent mycelium; dispersal follows discharge. Both processes are vital to the activities of phytopathogens. This chapter emphasizes spore discharge in pathogens, but mechanisms among saprobes are also discussed to provide an overview of the diversity of launch processes among the fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios GN (2006) Plant pathology, 5th edn. Academic, New York

    Google Scholar 

  • Ahimera N, Gisler S, Morgan DP, Michailides TJ (2004) Effects of single-drop impactions and natural and simulated rains on the dispersal of Botryosphaeria dothidea conidia. Phytopathology 94:1189-1197

    Article  PubMed  Google Scholar 

  • Ainsworth GC (1976) Introduction to the history of mycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Aylor DE (1975) Force required to detach conidia of Helminthosporium maydis. Plant Physiol 55:99-101

    Article  PubMed  CAS  Google Scholar 

  • Aylor DE (1990) The role of intermittent wind in the dispersal of fungal pathogens. Annu Rev Phytopathol 28:73-92

    Article  Google Scholar 

  • Aylor DE, Paw U KT (1980) The role of electrostatics in spore liberation by Drechslera turcica. Mycologia 72:1213-1219

    Article  Google Scholar 

  • Aylor DE, Wang Y, Miller DR (1993) Intermittent wind close to the round within a grass canopy. Boundary-Layer Meteorol 66:427-448

    Article  Google Scholar 

  • Barksdale TH, Asai GN (1961) Diurnal spore release of Piricularia oryzae from rice leaves. Phytopathology 51:313-317

    Google Scholar 

  • Beakes GW, Glocking SL (1998) Injection tube differentiation in gun cells of a Haptoglossa species which infects nematodes. Fungal Genet Biol 24:45-68

    Article  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (1992) Convergence in ascospore discharge mechanism among Pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol Phy- logenet Evol 1:59-71

    Article  CAS  Google Scholar 

  • Borkowski M (1972) Zur Anwendbarkeit der Quellungshypothese auf die Sporangienentleerungsweise bei Ach- lya. Z Allg Mikrobiol 12:371-383

    Article  PubMed  CAS  Google Scholar 

  • Brodie HJ (1975) The bird's nest fungi. University of Toronto Press, Toronto

    Google Scholar 

  • Buller AHR (1909-1934) Researches on fungi, vols 1-6. Longmans, London

    Google Scholar 

  • Bulliard P (1791) Histoire des champignons de la France, ou, traité él émentaire renfermant dans un ordre méthodique les descriptions et les figures des champignons qui croissent naturellement en France. Bazan, Paris

    Google Scholar 

  • Cahill DM, Cope M, Hardham AR (1996) Thrust reversal by tubular mastigonemes: immunological evidence for a role of mastigonemes in forward motion of zoospores of Phytophthora cinnamomi. Protoplasma 194:18-28

    Article  Google Scholar 

  • Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Mouyna I, Prevost M-C, Calderone R, Latgé JP (2006) Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergil- lus fumigatus. Appl Environ Microbiol 72:3259-3267

    Article  PubMed  CAS  Google Scholar 

  • Davis DJ, Burlak C, Money NP (2000) Osmotic pressure of fungal compatible osmolytes. Mycol Res 104:800-804

    Article  CAS  Google Scholar 

  • Deering R, Dong F, Rambo D, Money NP (2001) Airflow patterns around mushrooms and their relationship to spore dispersal. Mycologia 93:732-736

    Article  Google Scholar 

  • Dick MW (2001) Straminipilous fungi. Systematics of the Peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Kluwer, Dordrecht

    Google Scholar 

  • Dixon PA (1965) The development and liberation of the conidia of Xylosphaera furcata. Trans Br Mycol Soc 48:211-217

    Article  Google Scholar 

  • Dodge BO (1924) Aecidiospore discharge as related to the character of the spore wall. J Agric Res 27:749-756

    Google Scholar 

  • Elbert W, Taylor PE, Andreae MO, Pöschl U (2006) Contribution of fungi to primary biogenic aerosols in the atmosphere: active discharge of spores, carbohydrates, and ionorganic ions by Asco- and Basidiomycota. Atmos Chem Phys Discuss 6:11317-11355 Engel H, Schneider JC (1963) Die Umwandlung von Glykogen in Zucker in den Fruchtkörpern von Sphaer- obolus stellatus (Thode) Pers., vor ihrem Abschluss. Ber Dtsch Bot Ges 75:397-400

    Google Scholar 

  • Fischer M, Cox J, Davis DJ, Wagner A, Taylor R, Huerta AJ, Money NP (2004) New information on the mechanism of forcible ascospore discharge from Ascobolus immersus. Fungal Genet Biol 41:698-707

    Article  PubMed  Google Scholar 

  • Fitt BDL, McCartney HA (1986) Spore dispersal in splash droplets. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 87-104

    Google Scholar 

  • Fox RTV (2003) Chrysanthemum Itersonilia petal blight. Fungal foes in your garden, 55. Mycologist 17:44

    Google Scholar 

  • Gisi U (1983) Biophysical aspects of the development of Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, its biology, taxonomy, ecology and pathology. American Phytopathological Society, St Paul, pp 109-119

    Google Scholar 

  • Gorny RL, Reponen T, Grinshpun SA, Willeke K (2001) Source strength of fungal spore aerosolization from moldy building material. Atmos Environ 35:4853-4862

    Article  CAS  Google Scholar 

  • Gregory PH (1949) The operation of the puff-ball mechanism of Lycoperdon perlatum by raindrops as shown by ultra-high-speed Schlieren cinematography. Trans Br Mycol Soc 32:11-15

    Article  Google Scholar 

  • Gregory PH (1957) Electrostatic charges on spores of fungi in air. Nature 180:330

    Article  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Leonard Hill, Plymouth

    Google Scholar 

  • Gunn R, Kinzer GD (1949) The terminal velocity of fall for water drops in stagnant air. J Meteorol 6:243-248

    Article  Google Scholar 

  • Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Pathol 6:589-604

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR (2007) Cell biology of plant-oomycete interactions. Cell Microbiol 9:31-39

    Article  PubMed  CAS  Google Scholar 

  • Harthill WFT, Underhill AP (1976) "Puffing" in Sclerotinia sclerotiorum and S. minor. NZ J Bot 14:355-358

    Google Scholar 

  • Heath IB, Steinberg G (1999) Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet Biol 28:79-93

    Article  PubMed  CAS  Google Scholar 

  • Herwitz SR (2006) Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stem- flow and throughfall generation. Earth Surf Process Land 12:425-432

    Article  Google Scholar 

  • Hoch HC, Mitchell JE (1973) The effect of osmotic water potentials on Aphanomyces euteiches during zoospo- rogenesis. Can J Bot 51:413-420

    Article  Google Scholar 

  • Horberg HM (2002) Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. Eur J Plant Pathol 108:73-80 Horita H, McGovern RJ, Komatsu T, Yasuoka S (2005) Effects of inoculum density, leaf age, termperature, and wetness duration on black streak of edible burdock. J Gen Plant Pathol 71:247-252

    Google Scholar 

  • Husher J, Cesarov S, Davis C, Fletcher T, Mbuthia K, Richey L, Sparks R, Turpin LA, Money NP (1999) Evaporative cooling of mushrooms. Mycologia 91:351-352

    Article  Google Scholar 

  • Hyde GJ, Lancelle S, Hepler PK, Hardham AR (1991) Freeze substitution reveals a new model for spor- angial cleavage in Phytophthora, a result with implications for cytokinesis in other eukaryotes. J Cell Sci 100:735-746

    PubMed  Google Scholar 

  • Ingold CT (1939) Spore discharge in land plants. Oxford University Press, Oxford Ingold CT (1956) A gas phase in viable fungal spores. Nature 177:1242-1243

    Google Scholar 

  • Ingold CT (1964) Possible spore discharge mechanism in Pyricularia. Trans Br Mycol Soc 47:573-575

    Article  Google Scholar 

  • Ingold CT (1966) Aspects of spore liberation: violent discharge. In: Madelin MF (ed) The fungus spore. Butterworths, London, pp 113-132

    Google Scholar 

  • Ingold CT (1968) Increased distance of discharge due to puffing in Ascobolus. Trans Br Mycol Soc 51:592-594

    Article  Google Scholar 

  • Ingold CT (1971) Fungal spores: their liberation and dispersal. Oxford University Press, Oxford Ingold CT (1992) The basidium: a spore gun of precise range. Mycologist 6:111-113

    Google Scholar 

  • Ingold CT, Hadland SA (1959) The ballistics of Sordaria. New Phytol 58:46-57

    Article  Google Scholar 

  • Jarvis WR (1962) Splash dispersal of spores of Botrytis cinerea Pers. Nature 193:599

    Article  Google Scholar 

  • Kim CK, Min HS, Yoshino R (1990) Epidemiological studies of rice blast disease caused by Pyricularia oryzae Cavara (III); diurnal pattern of conidial release and dispersal under the natural conditions. Ann Phy- topathol Soc Japan 56:315-321

    Article  Google Scholar 

  • King AL (1944) The spore discharge mechanism of common ferns. Proc Natl Acad Sci USA 30:155-161

    Article  PubMed  CAS  Google Scholar 

  • Leach CM (1976) An electrostatic theory to explain violent spore liberation by Drechslera turcica and other fungi. Mycologia 68:63-86 Lovell DJ, Parker SR, Van Peteghem P, Webb DA, Welham SJ (2002) Quantification of raindrop kinetic energy for improved prediction of splash-dispersed pathogens. Phytopathology 92:497-503

    Google Scholar 

  • McCartney HA, Bainbridge A, Legg BJ (1982) Electric charge and the deposition of spores of barley mildew Erysiphe graminis. Atmos Environ 16:1133-1143

    Article  Google Scholar 

  • McLaughlin DJ (1982) Ultrastructure and cytochemistry of basidial and basidiospore development. In: Wells K, Wells EK (eds) Basidium and basidiocarp: evolution, cytology, function, and development. Springer, New York, pp 37-74

    Chapter  Google Scholar 

  • McLaughlin DM, Beckett A, Yoon KS (1985) Ultrastructure and evolution of ballistosporic basidiospores. Bot J Linn Soc 91:253-271 Meredith DS (1961) Spore discharge in Deightoniella toru-losa (Syd.) Ellis. Ann Bot 25:271-278

    Google Scholar 

  • Meredith DS (1962) Spore discharge in Cordana musae (Zimm.) Höhnel and Zygosporium oscheoides Mont. Ann Bot 26:233-241 Meredith DS (1963) Violent spore release in some Fungi Imperfecti. Ann Bot 27:39-47

    Google Scholar 

  • Meredith DS (1965) Violent spore release in Helminthospo-rium turcicum. Phytopathology 55:1099-1102

    Google Scholar 

  • Milburn JA (1970) Cavitation and osmotic potentials of Sordaria ascospores. New Phytol 69:133-141

    Article  Google Scholar 

  • Money NP (1998) More g's than the space shuttle: ballist-ospore discharge. Mycologia 90:547-558

    Article  Google Scholar 

  • Money NP, Brownlee C (1987) Structural and physiological changes during sporangial development in Achlya intricata Beneke. Protoplasma 136:199-204

    Article  Google Scholar 

  • Money NP, Harold FM (1992) Extension growth in the water mold Achlya: Interplay of turgor and wall strength. Proc Natl Acad Sci USA 89:4245-4249

    Article  PubMed  CAS  Google Scholar 

  • Money NP, Webster J (1988) Cell wall permeability and its relationship to spore release in Achlya intricata. Exp Mycol 12:169-179 Money NP, Webster J (1989) The mechanism of sporangial emptying in Saprolegnia. Mycol Res 92:45-49

    Google Scholar 

  • Money NP, Webster J, Ennos R (1988) Dynamics of sporang- ial emptying in Achlya intricata. Exp Mycol 12:13-27

    Article  Google Scholar 

  • Money NP, Caesar-TonThat T-C, Frederick B, Henson JM (1998) Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomyces graminis var. graminis. Fungal Genet Biol 24:240-251

    Article  PubMed  CAS  Google Scholar 

  • Moriura N, Matsuda Y, Oichi W, Nakashima S, Hirai T, Sameshima T, Nonomura T, Kakutani K, Kusakari S, Higashi K, Toyoda H (2006) Consecutive monitoring of lifelong production of conidia by individual conidi- ophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation. Mycol Res 110:18-27

    Article  PubMed  Google Scholar 

  • Müller HG (1958) The constricting ring mechanism of two predacious hyphomycetes. Trans Br Mycol Soc 41:341-364

    Article  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego Oichi W, Matsuda Y, Nonomura T, Toyoda H (2006) Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Dis 90:915-919

    Google Scholar 

  • Olive S, Stoianovitch C (1966) A simple new mycetozoan with ballistospores. Am J Bot 53:344-349

    Article  Google Scholar 

  • Pady SM, Gregory PH, Kramer CL, Clary R (1969) Periodicity of spore release in Cladosporium. Mycologia 61:87-98

    Article  Google Scholar 

  • Page RM (1964) Sporangium discharge in Pilobolus: a photographic study. Science 146:925-927

    Article  PubMed  CAS  Google Scholar 

  • Page RM, Kennedy D (1964) Studies on the velocity of discharged sporangia of Pilobolus kleinii. Mycologia 56:363-368

    Article  Google Scholar 

  • Paul PA, El-Allaf SM, Lipps PE, Madden LV (2004) Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94:1342-1349

    Article  PubMed  CAS  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Dis 89:784-796

    Article  Google Scholar 

  • Pinckard JA (1942) The mechanism of spore dispersal in Peronospora tabacina and certain other downy mildew fungi. Phytopathology 32:505-511

    Google Scholar 

  • Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005) The captured launch of a ballistospore. Mycologia 97:866-871

    Article  PubMed  Google Scholar 

  • Pringsheim EG, Czurda V (1927) Photo tropische und ballistische Probleme bei Pilobolus. Jahrb Wiss Bot 66:863-901

    Google Scholar 

  • Regan BC, Aloni S, Jensen K, Zettl A (2005) Surface-tension-driven nanoelectromechanical relaxation oscillator. Appl Phys Lett 86(123119):1-3

    Google Scholar 

  • Sache I (2000) Short-distance dispersal of wheat rust spores by wind and rain. Agronomie 20:757-767

    Article  Google Scholar 

  • Saint-Jean S, Testa A, Madden LV, Huber L (2006) Relationship between pathogen splash dispersal gradient and Weber number of impacting drops. Agric For Mete- orol 141:257-262

    Article  Google Scholar 

  • Saville DBO (1965) Spore discharge in Basidiomycetes: a unified theory. Science 147:165-166

    Article  Google Scholar 

  • Schmale DG, Arntsen QA, Bergstrom GC (2005) The forcible discharge distance of ascospores of Gibberella zeae. Can J Plant Pathol 27:376-382

    Article  Google Scholar 

  • Skotheim JM, Mahadevan L (2005) Physical limits and design principles for plant and fungal movements. Science 308:1308-1310 Smith RS (1966) The liberation of cereal stem rust ure- dospores under various environmental conditions in a wind tunnel. Trans Br Mycol Soc 49:33-41

    Google Scholar 

  • Thiel R, Schreurs WJ, Harold FM(1988) Transcellular ion currents during sporangium development in the water mould Achlya bisexualis. J Gen Microbiol 134:1089-1097

    PubMed  CAS  Google Scholar 

  • Thiers HD (1984) The secotioid syndrome. Mycologia 76:1-8

    Article  Google Scholar 

  • Trail F, Xu H, Loranger R, Gadoury D (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94:181-189

    Article  PubMed  Google Scholar 

  • Trail F, Gaffoor I, Vogel S (2005) Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 42:528-533

    Article  PubMed  Google Scholar 

  • Tucker K, Stolze JL, Kennedy AH, Money NP (2007) Biomechanics of conidial dispersal in the toxic mold Stachy- botrys chartarum. Fungal Genet Biol 44:641-647

    Article  PubMed  Google Scholar 

  • Turner JCR, Webster J (1991) Mass and momentum transfer on the small scale: How do mushrooms shed their spores? Chem Eng Sci 46:1145-1149

    Article  Google Scholar 

  • Turner JCR, Webster J (1995) Mushroom spores - the analysis of Buller's drop. Chem Eng Sci 50:2359-2360

    Article  CAS  Google Scholar 

  • Van Heerden A, Van Wyk PWJ, Botes PJ, Pohl CH, Strauss CJ, Nigam S, Kock JLF (2007) The release of elongated, sheathed ascospores from bottle-shaped asci in Dipo- dascus geniculatus. FEMS Yeast Res 7:173-179

    Article  PubMed  Google Scholar 

  • Vogel S (1998) Life's devices. The physical world of animals and plants. Princeton University Press, Princeton Vogel S (2005a) Living in a physical world. II. The bio-ballistics of small projectiles. J Biosci 30:167-175

    Google Scholar 

  • Vogel S (2005b) Living in a physical world. III. Getting up to speed. J Biosci 30:303-312

    Google Scholar 

  • Walker CA, van West P (2007) Zoospore development in the oomycetes. Mycol Res 21:10-18

    Google Scholar 

  • Walker DGA, Harvey R (1966) Studies of the ballistics of ascospores. New Phytol 65:59-74

    Article  Google Scholar 

  • Webster J (1952) Spore projection in the hyphomycete Nigrospora sphaerica. New Phytol 52:229-235

    Article  Google Scholar 

  • Webster J (1966) Spore projection in Epicoccum and Arthrinium. Trans Br Mycol Soc 49:339-343

    Article  Google Scholar 

  • Webster J, Chen C-Y (1990) Ballistospore discharge. Trans Mycol Soc Jpn 31:301-315

    Google Scholar 

  • Webster J, Dennis C (1967) The mechanism of sporangial discharge in Pythium middletonii. New Phytol 66:307-313

    Article  Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi. Cambridge University Press, Cambridge Webster J, Davey RA, Ingold CT (1984) Origin of the liquid in Buller's drop. Trans Br Mycol Soc 83:524-527

    Google Scholar 

  • Webster J, Proctor MCF, Davey RA, Duller GA (1988) Measurement of the electrical charge on some basidiospores and an assessment of two possible mechanisms of ballistospore propulsion. Trans Br Mycol Soc 91:193-203

    Article  Google Scholar 

  • Webster J, Davey RA, Turner JCR (1989) Vapour as the source of water in Buller's drop. Mycol Res 93:297-302

    Article  Google Scholar 

  • Webster J, Davey RA, Smirnoff N, Fricke W, Hinde P, Tomos D, Turner JCR (1995) Mannitol and hexoses are components of Buller's drop. Mycol Res 99:833-838

    Article  CAS  Google Scholar 

  • Weston W, Taylor RE (1948) The plant in health and disease. Crosby Lockwood and Son, London Yarwood CE (1941) Diurnal cycle of ascus maturation of Taphrina deformans. Am J Bot 28:355-357

    Google Scholar 

  • Zoberi MH (1961) Take-off of mould spores in relation to wind speed and humidity. Ann Bot 25:53-64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Money .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Money, N.P., Fischer, M.W.F. (2009). Biomechanics of Spore Release in Phytopathogens. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_6

Download citation

Publish with us

Policies and ethics