Skip to main content

Lichen-Forming Fungi and Their Photobionts

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Lichens are the symbiotic phenotype of nutritionally specialized fungi, ecologically obligate biotrophs which acquire fixed carbon from a population of minute photobiont cells (Honegger 1991). Lichenforming fungi (also referred to as lichen mycobionts) are, like plant or animal pathogens or mycorrhizal fungi, a polyphyletic, taxonomically diverse group of nutritional specialists, but are otherwise normal representatives of their fungal classes. They differ from non-lichenized taxa by their manifold adaptations to symbiosis with a population of minute photobiont cells. Lichenization is a successful nutritional strategy, almost 20% of all fungal species being lichenized (Kirk et al. 2001). More than 10% of terrestrial ecosystems are lichen-dominated; these are the sites where vascular plants are at their physiological limits: high alpine, arctic, antarctic and desert ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GC, Kropp BR (1996) Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia 88:459-472

    CAS  Google Scholar 

  • Ahmadjian V (1988) The lichen alga Trebouxia - does it occur free-living? Plant Syst Evol 158:243-247

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York Ahmadjian V (2002) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 373-383

    Google Scholar 

  • Allgaier C (2007) Active camouflage with lichens in a terrestrial snail, Napaeus (N.) barquini Alonso and Ibanez, 2006 (Gastropoda, Pulmonata, Enidae). Zool Sci 24:869-876

    Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen

    Google Scholar 

  • Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:55-576

    Google Scholar 

  • Aspray T, Jones E, Whipps J, Bending G (2006) Importance of mycorrhization helper bacteria: cell density and metabolite localization for the Pinus sylvestris/Lactar- ius rufus symbiosis. FEMS Microbiol Ecol 56:25-33

    PubMed  CAS  Google Scholar 

  • Ates A, Yildiz A, Yildiz N, Calimli A (2007) Heavy metal removal from aqueous solution by Pseudevernia fur- furacea (L.) Zopf. Ann Chim 97:385-93

    PubMed  CAS  Google Scholar 

  • Barry VC (1946) Anti-tubercular compounds. Nature 158:863-865

    PubMed  CAS  Google Scholar 

  • Belnap J, Lange OL (2003) Biological soil crusts: structure, function and management. Ecological studies, vol 150. Springer, Berlin

    Google Scholar 

  • Bennett JP, Wright DM (2004) Element content of Xantho- parmelia scabrosa growing on asphalt in urban and rural New Zealand. Bryologist 107:421-428

    CAS  Google Scholar 

  • Bernard G, Giménez-Arnau E, Rastogi SC, Heydorn S, Johansen JD, Menné T, Goossens A, Andersen K, Lepoittevin JP (2003) Contact allergy to oak moss: search for sensitizing molecules using combined bioassay-guided chemical fractionation, GC-MS, and structure-activity relationship analysis. Arch Dermatol Res 295:229-35

    PubMed  Google Scholar 

  • Biazrov LG (1994) The radionuclides in lichen thalli in Chernobyl and East Urals areas after nuclear accidents. Phyton 34:85-94 Bjelland T, Thorset IH (2002) Comparative studies of the lichen-rock interface of four lichens in Vingen, western Norway. Chem Geol 192:81-98

    Google Scholar 

  • Bjelland T, S^b0 L, Thorseth IH (2002) The occurrence of biomineralization products in four lichen species growing on sandstone in western Norway. Lichenolo- gist 34:429-440

    Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photo- chem Photobiol Sci 1:678-685

    CAS  Google Scholar 

  • Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flav- ocetraria nivalis. Phytochemistry 66:337-344

    PubMed  CAS  Google Scholar 

  • Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Asco- mycota). Biol J Linn Soc 88:283-293

    Google Scholar 

  • Bock C, Jacob A, Kirst GO, Leibfritz D, Mayer A (1996) Metabolic changes of the antarctic green alga Prasiola crispa subjected to water stress investigated by in vivo 31P NMR. J Exp Bot 47:241-249

    CAS  Google Scholar 

  • Boissiere J-C (1987) Ultrastructural relationship between the composition and the structure of the cell wall of the mycobiont of two lichens. Progress and problems in lichenology in the eighties. Bibl Lichenol 35:117-132

    Google Scholar 

  • Bostedt G (2001) Reindeer husbandry, the Swedish market for reindeer meat, and the Chernobyl effects. Agric Econ 26:217-226

    Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven Brown DH, Rapsch S, Beckett A, Ascaso C (1987) The effect of desiccation on cell shape in the lichen Parmelia sul- cata Taylor. New Phytol 105:295-299

    Google Scholar 

  • Brunauer G, Stocker-Wörgötter E (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38:187-201

    Google Scholar 

  • Brunner U, Honegger R (1985) Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in 6 genera of lichen phycobionts. Can J Bot 63:2221-2230

    CAS  Google Scholar 

  • Buckley DA, Wakelin SH, Seed PT, Holloway D, Rycroft RJ, White IR, McFadden JP (2000) The frequency of fragrance allergy in a patch-test population over a 17-year period. Br J Dermatol 142:279-283

    PubMed  CAS  Google Scholar 

  • Buffoni Hall RS, Bornman JF, Björn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J Photochem Photobiol B 66:13-20

    PubMed  CAS  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol

    Google Scholar 

  • 57:484-495

    Google Scholar 

  • Chen J, Zhang MY, Wang L, Shimazaki H, Tamura M (2005) A new index for mapping lichen-dominated biological soil crusts in

    Google Scholar 

  • desert areas. Remote Sensing Environ 96:165-175

    Google Scholar 

  • Ciferri O, Tiano P, Mastromei G (2000) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Kluwer/ Plenum, New York Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, and interesting natural compound. Naturwissenschaften 89:137-146

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Jones DG, Jonasson S, Chapin FS, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984-994

    Google Scholar 

  • Cracraft J (1983) Species diversity, biogeography, and the evolution of biotas. Am Zool 34:33-47

    Google Scholar 

  • Crittenden PD, Porter N (1991) Lichen-forming fungi: potential sources of novel metabolites. Trends Bio- technol 9:409-414

    CAS  Google Scholar 

  • Crittenden PD, David JC, Hawksworth DL, Campbell FS (1995) Attempted isolation and success in the cultur- ing of a broad

    Google Scholar 

  • spectrum of lichen-forming and lichen- icolous fungi. New Phytol 130:267-297

    Google Scholar 

  • Culberson CF (1969) Chemical and botanical guide to lichen products. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Culberson CF, Armaleo D (1992) Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp Mycol 16:52-63

    CAS  Google Scholar 

  • Dahlkild A, Kallersjo M, Lohtander K, Tehler A (2001) Pho- tobiont diversity in the Physciaceae (Lecanorales). Bryologist 104:527-536

    Google Scholar 

  • Dahlquist I, Fregert S (1980) Contact allergy to atranorin in lichens and perfumes. Contact Dermatitis 6:111-119

    PubMed  CAS  Google Scholar 

  • Deckert RJ, Garbary DJ (2005) Ascophyllum and its symbi- onts. VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20:225-232

    Google Scholar 

  • Diederich P (2003) New species and new records of American lichenicolous fungi. Herzogia 16:41-90 Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171-182

    Google Scholar 

  • Durazo FA, Lassman C, Han SHB, Saab S, Lee NP, Kawano M, Saggi B, Gordon S, Farmer DG, Yersiz H, Goldstein RLI, Ghobrial M, Busuttil RW (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastro- enterol 99:950-952

    Google Scholar 

  • Ekman S, T0nsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol Res 106:1262-1276

    Google Scholar 

  • Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Aust J Bot 44:581-599

    Google Scholar 

  • Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft CJ (2005) Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytol 168:423-434

    PubMed  CAS  Google Scholar 

  • Elo H, Matikainen J, Pelttar E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin- resistant Staphylococcus aureus. Naturwissenschaften 94:465-468

    PubMed  CAS  Google Scholar 

  • Englund B (1977) The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiol Plant 41:298-304

    CAS  Google Scholar 

  • Eriksson O (2005) Ascomyceternas ursprung och evolution - Protolichenes-hypotesen. Svensk Mykol Tidskr 26:22-29

    Google Scholar 

  • Eriksson OE (2006a) Outline of Ascomycota. Myconet 12:1-82 Eriksson OE (2006b) Notes on ascomycete systematics. Myconet 12:83-101

    Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Fischer, Stuttgart Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses - silent chronists of the Chernobyl accident. Bibl Lichenol 38:63-77

    Google Scholar 

  • Friedl T (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Dissertation, University of Bayreuth Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen Biology, 2nd edn. Cambridge University Press, Cambridge, pp 9-26

    Google Scholar 

  • Fröberg L, Berg CO, Baur A, Baur B (2001) Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist 33:543-545

    Google Scholar 

  • Galloway DJ (1996) Lichen biogeography. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 199-216 Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94-105

    PubMed  Google Scholar 

  • Gauslaa Y, Ustvedt EM (2003) Is parietin a UV-B or a blue- light screening pigment in the lichen Xanthoria pari- etina? Photochem Photobiol Sci 2:424-432

    CAS  Google Scholar 

  • Gerson U, Seaward MRD (1977) Lichen-invertebrate associations. In: Seaward MRD (ed) Lichen ecology, Academic, London, pp 69-119

    Google Scholar 

  • Goebel K (1926) Die Wasseraufnahme der Flechten. Ber Dtsch Bot Ges 44:158-161

    Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, New Jersey

    Google Scholar 

  • Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New

    Google Scholar 

  • Zealand. Oecologia 85:498-503

    Google Scholar 

  • Green TGA, Büdel B, Heber U, Meyer A, Zellner A, Lange OL (1993) Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytol 125:723-731

    Google Scholar 

  • Green TGA, Schlensog M, Sancho LG, Winkler JB, Broom FD, Schroeter B (2002) The photobiont determines the pattern of photosynthetic activity within a single lichen thallus containing cyanobacterial and green algal sectors (photosymbiodeme). Oecologia 130:191-198

    Google Scholar 

  • Gressitt JL (1965) Flora and fauna on backs of large Papuan moss-forest weevils. Science 150:1833-1835

    PubMed  CAS  Google Scholar 

  • Greuter W, McNell J, Barrie FR, Bürdet H-M, Demoulin V, Filgueras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL (2000) International Code of Botanical Nomenclature (St Louis Code). Regnum Vegetabile 138. Koeltz, Königstein Griffiths HB, Greenwood AD, Millbank JW (1972) The frequency of heterocysts in the Nostoc phycobiont of the lichen Peltigera canina Willd. New Phytol 71:11-13

    Google Scholar 

  • Grube M, Blaha J (2003) On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycol Res 107:1419-1426

    PubMed  CAS  Google Scholar 

  • Grube M, Kantvilas G (2006) Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist 38:241-249

    Google Scholar 

  • Haas JR, Purvis OW (2006) Lichen biogeochemistry. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 343-376

    Google Scholar 

  • Han D, Matsumaru K, Rettori D, Kaplowitz N (2004) Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol 67:439-451

    PubMed  CAS  Google Scholar 

  • Hauck M, Huneck S (2007) Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol 33:219-223

    PubMed  CAS  Google Scholar 

  • Hauck M, Jürgens SR, Brinkmann M, Herminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Ann Bot 101:531-539

    PubMed  Google Scholar 

  • Hawksworth DL (1988a) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3-20

    Google Scholar 

  • Hawksworth DL (1988b) Effects of algae and lichen-forming fungi on tropical crops. In: Agnihotri VP, Sarbhoy KA, Kumar D (eds) Perspectives of mycopathology. Malhotra, New Delhi, pp 76-83

    Google Scholar 

  • Hawksworth DL, Honegger R (1994) The lichen thallus: symbiotic phenotype and its responses to gall producers. In: Williams MC (ed) Plant galls: organisms, interactions. Clarendon, Oxford, pp 77-98

    Google Scholar 

  • Helms G (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Dissertation, University of Göttingen Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73-86

    Google Scholar 

  • Herrera-Campos MA, Lücking R, Perez R, Campos A, Colin PM, Pena AB (2004) The foliicolous lichen flora of Mexico. V. Biogeographical affinities, altitudinal preferences, and an updated checklist of 293 species. Lichenologist 36:309-327Hill DJ (1976) The physiology of lichen symbiosis. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 457-496

    Google Scholar 

  • Hitch CJB, Millbank JW (1975) Nitrogen metabolism in lichens. VI. The blue-green phycobiont content, hete- rocyst frequency and nitrogenase activity in Peltigera species. New Phytol 74:473-476

    CAS  Google Scholar 

  • Holfeld H (1998) Fungal infections of the phytoplankton: seasonality, minimal host density, and specificity in a mesotrophic lake.

    Google Scholar 

  • New Phytol 138:507-517

    Google Scholar 

  • Honegger R (1984) Cytological aspects of the mycobiont- phycobiont relationship in lichens. Haustorial types, phycobiont cell wall

    Google Scholar 

  • types, and the ultrastructure of the cell wall surface layers in some cultured and symbiotic myco- and phycobionts. Lichenologist

    Google Scholar 

  • 16:111-127

    Google Scholar 

  • Honegger R (1985) Fine structure of different types of symbiotic relationships in lichens. In: Brown DH (ed) Lichen physiology and

    Google Scholar 

  • cell biology. Plenum, New York, pp 287-302

    Google Scholar 

  • Honegger R (1986a) Ultrastructural studies in lichens. I. Haustorial types and their frequencies in a range of lichens with

    Google Scholar 

  • trebouxioid phycobionts. New Phytol 103:785-795

    Google Scholar 

  • Honegger R (1986b) Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline

    Google Scholar 

  • lichen products in four Parme- liaceae. New Phytol 103:797-808

    Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42: 553-578

    CAS  Google Scholar 

  • Honegger R (1995) Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spacial problems at the cellular level. Can J Bot 73:569-578

    Google Scholar 

  • Honegger R (1996) Growth and regenerative capacity in the foliose lichen Xanthoriaparietina (L.) Th. Fr. (Tel- oschistales, Ascomycotina). New Phytol 133:573-581

    Google Scholar 

  • Honegger R (1997) Metabolic interactions at the myco- biont-photobiont interface in lichens. In: Carroll GC, Tudzynski P (eds) Plant relationships, vol V.A. Springer, Heidelberg, pp 209-221

    Google Scholar 

  • Honegger R (1998) The lichen symbiosis - what is so spectacular about it? Lichenologist 30:193-212

    Google Scholar 

  • Honegger R (2001) The symbiotic phenotype of lichen- forming ascomycetes. In: Hock B (ed) Fungal associations, vol IX. Springer, Berlin, pp 165-188

    Google Scholar 

  • Honegger R (2003) The impact of different long-term storage conditions on the viability of lichen-forming asco- mycetes and their green algal photobiont, Trebouxia spp. Plant Biol 5:324-330

    Google Scholar 

  • Honegger R (2004) Fine structure of the interaction of Leprocaulon microscopicum with its integrated green algal photobiont, Dictyochloropsis symbiontica. Bibl Lichenol 88:201-210

    Google Scholar 

  • Honegger R (2007) Water relations in lichens. In: Gadd GM, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185-200

    Google Scholar 

  • Honegger R, Bartnicki-Garcia S (1991) Cell wall structure and composition of cultured mycobionts from the lichens Cladonia macrophylla, Cladonia caespiti- cia, and Physcia stellaris (Lecanorales, Ascomycetes). Mycol Res 95:905-914

    CAS  Google Scholar 

  • Honegger R, Brunner U (1981) Sporopollenin in the cell wall of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59:2713-2734

    CAS  Google Scholar 

  • Honegger R, Haisch A (2001) Immunocytochemical location of the (1 ^ 3) (1 ^ 4)-beta-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (Icelandic moss). New Phytol 150:739-746

    CAS  Google Scholar 

  • Honegger R, Hugelshofer G (2000) Water relations in the Peltigera aphthosa group visualized with LTSEM techniques. Bibl Lichenol 75:113-126

    Google Scholar 

  • Huneck S (2001) New results on the chemistry of lichen substances. Springer, Vienna

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska Y, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Hum- ber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsu- ura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818-822

    Google Scholar 

  • Johansen B, Karlsen SR (2005) Monitoring vegetation changes on Finnmarksvidda, northern Norway, using Landsat MSS and Landsat TM/ETM+ satellite images. Phytocoenologia 35:969-984

    Google Scholar 

  • Johansen JD, Heydorn S, Menne T (2002) Oak moss extracts in the diagnosis of fragrance contact allergy. Contact Dermatitis 46:157-161

    PubMed  CAS  Google Scholar 

  • Johansen JD, Bernard G, Gimenez-Arnau E, Lepoittevin JP, Bruze M, Andersen KE (2006) Comparison of elicitation potential of chloroatranol and atranol-2 allergens in oak moss absolute. Contact Dermatitis 54:192-195

    PubMed  CAS  Google Scholar 

  • Jörgensen PM (1998) What shall we do with the blue-green counterparts? Lichenologist 30:351-356

    Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC, Boca Raton, pp 37-100 Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314-324 Kappen L, Schroeter B (1997) Activity of lichens under the influence of snow and ice (18th symposium on polar biology). Proc NIPR Symp Polar Biol 10:163-168

    Google Scholar 

  • Kershaw M, Thornton C, Wakley G, Talbot N (2005) Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Mol Microbiol 56:117-125

    PubMed  CAS  Google Scholar 

  • Kieft T (1988) Ice nucleation activity in lichens. Appl Environ Microbiol 54:1678-1681

    PubMed  CAS  Google Scholar 

  • Kieft T, Ahmadjjian V (1989) Biological ice nucleation activity in lichen mycobionts and photobionts. Lichenolo- gist 21:335-362

    Google Scholar 

  • Kieft T, Ruscetti T (1990) Characterisation of biological ice nuclei from a lichen. J Bacteriol 172:3519-3623

    PubMed  CAS  Google Scholar 

  • Kieft T, Ruscetti T (1992) Molecular sizes of lichen ice nucleation sites determined by gamma-radiation inactivation analysis. Cryobiology 29:407-413

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby's dictionary of the fungi, 9th edn. CAB International, Oxford Kluge M, Mollenhauer D, Mollenhauer R (1994) Geosiphon pyriforme (Kützing) von Wettstein, a promising system for studying endocyanoses. Prog Bot 55:130-141

    Google Scholar 

  • Knowles RD, Pastor J, Biesboer DD (2006) Increased soil nitrogen associated with dinitrogen-fixing, terri- colous lichens of the genus Peltigera in northern Minnesota. Oikos 114:37-48

    CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1972) Is Ascophyllum nodosum lichenized? Bot Mar 15:109-112

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobionts of Apophlaea, Asco- phyllum and Pelvetia. Systema Ascomycetum 16:1-7

    Google Scholar 

  • Kristmundsdottir T, Jonsdottir E, Ogmundsdottir HM, Ingolfsdottir K (2005) Solubilization of poorly soluble lichen metabolites for biological testing on cell lines. Eur J Pharm Sci 24:539-543

    PubMed  CAS  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bry- ologist 103:645-660

    CAS  Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38-53

    CAS  Google Scholar 

  • Kytöviita M-M, Crittenden PD (2007) Growth and nitrogen relations in the mat-forming lichens Stereocaulon paschale and Cladonia stellaris. Ann Bot 100:1537-1545

    PubMed  Google Scholar 

  • Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of green algal lichen Coenogo- nium linkii in neotropic lowland rain forests. J Phycol 40:70-73

    Google Scholar 

  • Lalley JS, Viles HA (2005) Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. Lichenologist 37:77-91

    Google Scholar 

  • Lalley JS, Viles HA (2006) Do vehicle track disturbances affect the productivity of soil-growing lichens in a fog desert? Funct Ecol 20:548-556

    Google Scholar 

  • Lange O, Meyer A, Zellner H, Ullmann I, Wessels D (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib desert. Madoqua 17:17-30

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H, Meyer A (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1-15

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in

    Google Scholar 

  • southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195-202

    Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes

    Google Scholar 

  • capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268-280

    Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bry-ologist 89:111-122

    CAS  Google Scholar 

  • Lawrey JD (1993) Lichens as monitors of pollutant elements at permanent sites in Maryland and Virginia. Bryologist 96:339-341 Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80-120

    Google Scholar 

  • Lewis Smith RI (1995) Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic. Lichenologist 27:473-483

    Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877-896

    PubMed  CAS  Google Scholar 

  • Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447-482

    CAS  Google Scholar 

  • Lücking R (2008) Foliicolous lichenized fungi. Flora neotropica, monograph 103. New York Botanical Garden Press, New York, 867 pp Lücking R, Matzer M (2001) High foliicolous lichen alpha-diversity on individual leaves in Costa Rica and Amazonian Ecuador. Biodivers Conserv 10: 2139-2152

    Google Scholar 

  • Lücking R, Wirth V, Ferraro LI, Caceres MES (2003) Folii- colous lichens from Valdivian temperate rain forest of Chile and Argentina: evidence of an austral element, with the description of seven new taxa. Global Ecol Biogeogr 12:21-36

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937-940

    PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox C, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James T, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold A, Miadliko- wska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lücking R, Lumbsch T, O'Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris R, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004)

    Google Scholar 

  • Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446-1480

    Google Scholar 

  • MacGinitie H (1937) The flora of the Weaverville beds of Trinity County, California, with descriptions of the plant-bearing beds. Eocene flora of western America, vol 465. Carnegie Institution, Washington, pp 83-151

    Google Scholar 

  • Mägdefrau K (1957) Flechten und Moose im baltischen Bernstein. Ber Dtsch Bot Ges 9:433-435

    Google Scholar 

  • Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68:1408-1413

    PubMed  CAS  Google Scholar 

  • Martin F, Laurent P, Decarvalho D, Burgess T, Murphy P, Nehls U, Tagu D (1995) Fungal gene expression during ectomycorrhiza formation. Can J Bot 73:S541-S547

    CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York Mayr E (2000) The biological species

    Google Scholar 

  • concept. In: Wheeler QD, Meier R (eds) Species concepts and phylogenetic theory - a debate. Columbia University Press, New York,

    Google Scholar 

  • pp 17-29

    Google Scholar 

  • McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Monogr N Am Lichenol 1:1-105

    Google Scholar 

  • McEvoy M, Solhaug KA, Gauslaa Y (2006) Ambient UV irradiation induces a blue pigment in Xanthoparmelia stenophylla. Lichenologist 38:285-289

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271-282

    PubMed  CAS  Google Scholar 

  • Mehli H, Skuterud L, Mosd0l A, T0nnessen A (2000) The impact of Chernobyl fallout on the Southern Saami reindeer herders of Norway in 1996. Health Phys 79:682-690

    Google Scholar 

  • Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen- forming ascomycete

    Google Scholar 

  • Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc 76:259-268

    Google Scholar 

  • Miao V, Coeffet-LeGal M-F, Brown D, Sinnemann S, Donaldson G, Davies J (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349-355

    PubMed  CAS  Google Scholar 

  • Millbank JW (1976) Aspects of nitrogen metabolism in lichens. Lichenology: progress and problems. Academic, London, pp 441-455 Mitchell JC, Champion RH (1965) Human allergy to lichens. Bryologist 68:116-118

    Google Scholar 

  • Miura S, Yokota A (2006) Isolation and characterization of cyanobacteria from lichen. J Gen Appl Microbiol 52:365-374

    PubMed  CAS  Google Scholar 

  • Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 339-351

    Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon

    Google Scholar 

  • pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme

    Google Scholar 

  • (Kütz.) Hariot. Protoplasma 193:3-9

    Google Scholar 

  • Mukhtar A, Garty J, Galun M (1994) Does the lichen alga Trebouxia occur free-living in nature: further immu- nological evidence.

    Google Scholar 

  • Symbiosis 17:247-253

    Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9-16

    PubMed  Google Scholar 

  • Muscha JM, Hilda AL (2006) Biological soil crusts in grazed and ungrazed Wyoming sagebrush steppe. J Arid Environ 67:195-207

    Google Scholar 

  • Nelsen MP, Lücking R, Umana L, Trest MT, Will-Wolf S, Chaves JL, Gargas A (2007) Multiclavula ichthyiformis (Fungi:

    Google Scholar 

  • Basidiomycota: Cantharellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. Am J Bot 94:1289-1296

    Google Scholar 

  • Noeske O, Läuchli A, Lange OL, Vieweg GH, Ziegler H (1970) Konzentration und Lokalisierung von Schwermetallen in Flechten

    Google Scholar 

  • der Erzschlackenhalden des Harzes. Dtsch Bot Ges Neue Folge 4:67-79

    Google Scholar 

  • Nordberg M-L, Allard A (2002) A remote sensing methodology for monitoring lichen cover. Can J Remote Sensing 28:262-274

    Google Scholar 

  • Nyati S, Beck A, Honegger R (2007) Fine structure and phylogeny of green algal photobionts in the microfila- mentous genus Psoroglaena (Verrucariaceae, lichen- forming ascomycetes). Plant Biol 9:390-399

    PubMed  CAS  Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211-216

    PubMed  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723-734

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:199-208

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Omarsdottir S, Smestad Paulsen B, Wagner H (2003) Immunologically active O6-branched (1^3)-beta-glucan from the lichen Thamnolia vermic- ularis var. subuliformis. Phytomedicine 10:318-324

    PubMed  CAS  Google Scholar 

  • Omarsdottir S, Petersen BO, Paulsen BS, Togola A, Duus J0, Olafsdottir ES (2006) Structural characterisation of novel lichen heteroglycans by NMR spectroscopy and methylation analysis. Carbohydr Res 341:2449-2455

    Google Scholar 

  • Omarsdottir S, Freysdottir J, Olafsdottir ES (2007) Immu- nomodulating polysaccharides from the lichen Tham- nolia vermicularis var. subuliformis. Phytomedicine 14:179-184

    PubMed  CAS  Google Scholar 

  • Opanowicz M, Grube M (2004) Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized Ascomycota). Lichenologist 36:125-131

    Google Scholar 

  • Opanowicz M, Blaha J, Grube M (2006) Detection of par- alogous polyketide synthase genes in Parmeliaceae by specific primers. Lichenogist 38:47-54

    Google Scholar 

  • Palmqvist K, Dahlman L, Valladares F, Tehler A, Sancho LG, Mattsson J-E (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133:295-306

    Google Scholar 

  • Pankewitz F, Zöllmer A, Gräser Y, Hilker M (2007) Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: biosynthesis by the beetles. Arch Insect Biochem Physiol 662:98-108

    Google Scholar 

  • Peñas MM, Aranguren J, Ramírez L, Pisabarro AG (2004) Structure of gene coding for the fruit body-specific hydrophobin Fbh1 of the edible basidiomycete Pleu- rotus ostreatus. Mycologia 96:75-82

    PubMed  Google Scholar 

  • Pérez FL (1997a) Geoecology of erratic globular lichens of Catapyrenium lachneum in a high Andean Paramo. Flora 192:241-259

    Google Scholar 

  • Pérez FL (1997b) Geoecology of erratic lichens of Xantho- parmelia vagans in an equatorial Andean Paramo. Plant Ecol 129:11-28 Peterson E (2000) An overlooked fossil lichen (Lobar-iaceae). Lichenologist 32:298-300

    Google Scholar 

  • Piercey-Normore MD (2004) Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Can J Bot 82:947-961

    Google Scholar 

  • Piercey-Normore M (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331-344

    Google Scholar 

  • Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylo- genetic analyses of nuclear SSU and LSU Ribosomal DNA. Lichenologist 31:409-418

    Google Scholar 

  • Platt JL, Spatafora JW (2000) Evolutionary relationships of nonsexual lichenized fungi: molecular phylogenetic hypotheses for the genera Siphula and Thamnolia from SSU and LSU rDNA. Mycologia 92:475-487

    CAS  Google Scholar 

  • Poelt J, Huneck S (1968) Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Oesterr Bot Z 115:411-422

    CAS  Google Scholar 

  • Poinar G, Peterson E, Platt J (2000) Fossil Parmelia in New World amber. Lichenologist 32:263-269

    Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal- nriched environments. Lichenologist 28:571-601

    Google Scholar 

  • Purvis OW, Pawlik-Skowroiiska B (2008) Lichens and metals. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 175-200

    Google Scholar 

  • Purvis OW, Chimonides J, Din V, Erotokritou L, Jeffries T, Jones GC, Louwhoff S, Read H, Spiro B (2003) Which factors are responsible for the changing lichen floras of London? Sci Tot Environ 310:179-189

    CAS  Google Scholar 

  • Purvis OW, Chimonides PDJ, Jeffries TE, Jones GC, Rusu A-M, Read H (2007) Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmos Environ 41:72-80

    CAS  Google Scholar 

  • Rademaker M (2000) Allergy to lichen acids in a fragrance. Australas J Dermatol 41:50-51

    PubMed  CAS  Google Scholar 

  • Richardson DHS (1975) The vanishing lichens. David and Charles, Newton Richardson DHS (1995) Metal uptake in lichens. Symbiosis 18:119-127

    Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032-1036

    PubMed  Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297: 357

    PubMed  CAS  Google Scholar 

  • Rindi F, Guiry MD (2003) Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogam Algol 24:245-267 Rogers RW (1971) Distribution of the lichen Chondropsis semiviridis in relation to its heat and drought resistance. New Phytol 70:1069-1077

    Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbili- caria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209-1217

    PubMed  CAS  Google Scholar 

  • Rosentreter R (1993) Vagrant lichens in North America. Bryologist 96:333-338

    Google Scholar 

  • Rundel PW (1978) The ecological role of secondary lichen substances. Biochem Syst Ecol 6:157-170

    CAS  Google Scholar 

  • Rustad LE, Campbell J, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, and GCTE NEWS (2001) A meta-analysis of the response of soil respiration, net N mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543-562

    Google Scholar 

  • Sancho LG, de la Torre R, Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS Experiment. Astrobiology 7:443-454

    Google Scholar 

  • Sanders WB (2001) Preliminary light microscope observations of fungal and algal colonization and lichen thal- lus initiation on glass slides placed near foliicolous lichen communities within a lowland tropical forest. Symbiosis 31:85-94

    Google Scholar 

  • Sanders WB (2002) In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from prop- agule germination to propagule production. Am J Bot 89:1741-1746

    PubMed  Google Scholar 

  • Sanders WB (2005) Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37:373-

    Google Scholar 

  • 382

    Google Scholar 

  • Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling

    Google Scholar 

  • lichen communities. New Phytol 155:425-435

    Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2004) The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae

    Google Scholar 

  • (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. Am J

    Google Scholar 

  • Bot 91:511-522

    Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2005) Ultrastructural study of the brown alga Petroderma maculiforme (Phaeo- phyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur J Phycol 40:353-361

    CAS  Google Scholar 

  • Sawidis T, Heinrich G (1992) Cesium-137 monitoring using lichens and mosses from northern Greece. Can J Bot 70:140-144

    CAS  Google Scholar 

  • Scharf CS (1978) Birds and mammals as passive transporters for algae found in lichens. Can Field Nat 92:70-71

    Google Scholar 

  • Scheidegger C (1994) Low temperature scanning electron microscopy: the location of free and perturbed water and its role in the morphology of the lichen symbionts. Crypt Bot 4:290-299

    Google Scholar 

  • Scherrer S, Honegger R (2003) Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytol 158:375-389

    CAS  Google Scholar 

  • Scherrer S, De Vries OMH, Dudler R, Wessels JGH, Honegger R (2000) Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoriaparietina and X. ectaneoides. Fungal Genet Biol 30:81-93

    PubMed  CAS  Google Scholar 

  • Scherrer S, Haisch A, Honegger R (2002) Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. New Phytol 154:175-184

    CAS  Google Scholar 

  • Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbili- caria aprina from continental Antarctica. New Phytol 131:273-285

    Google Scholar 

  • Schultz C (2006) Remote sensing the distribution and spatiotemporal changes of major lichen communities in the central Namib Desert. Dissertation, University of Kaiserslautern

    Google Scholar 

  • Schüssler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75-83

    Google Scholar 

  • Schüssler A, Kluge M (2001) Geosiphon pyriforme, an endo- cytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycor- rhizal research. In: Hock B (ed) Fungal associations, vol IX. Springer, Heidelberg, pp 151-161

    Google Scholar 

  • Schüssler A, Schnepf E, Mollenhauer D, Kluge M (1995) The fungal bladders of the endocyanosis Geosiphon pyriforme, a Glomus-related fungus: cell wall permeability indicates a limiting pore radius of only 0.5 nm. Protoplasma 185:131-139

    Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413-1421

    Google Scholar 

  • Seyd EL, Seaward MRD (1984) The association of oribatid mites with lichens. Zool J Linn Soc 80:369-420

    Google Scholar 

  • Shirtcliffe NJ, Brian Pyatt F, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193-1197

    PubMed  CAS  Google Scholar 

  • Sillett SC, Antoine ME (2004) Lichens and bryophytes in forest canopies. In: Lowman MD, Rinker BH (eds) Forest canopies. Elsevier, Amsterdam, pp. 151-174

    Google Scholar 

  • Sipman HJM (1994) Foliicolous lichens on plastic tape. Lichenologist 26:311-312

    Google Scholar 

  • Smith DC (1980) Mechanisms of nutrient movement between lichen symbionts. In: Cook CB, Pappas PW, Rudolph ED (eds) Cellular interactions in symbiosis and parasitism. Ohio State University Press, Columbus, pp 197-227

    Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. Arnold, London Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV- induction of sun-screening pigments in lichens. New Phytol 158:91-100

    Google Scholar 

  • StClair L, Seaward M (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Kluwer, Dordrecht Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104:576-581

    Google Scholar 

  • Stoll A, Brack A, Renz J (1947) Die antibakterielle Wirkung der Usninsäure auf Mykobakterien und andere Mikroorganismen. Experientia 3:115-117

    PubMed  CAS  Google Scholar 

  • Strand P, Selnaes TD, B0e E, Harbitz O, Andersson-S0rlie A (1992) Chernobyl fallout: internal doses to the Norwegian population and the effect of dietary advice. Health Phys 63:385-392

    Google Scholar 

  • Stubbs CS (1995) Dispersal of soredia by the oribatid mite, Humerobates arborea. Mycologia 87:454-458

    Google Scholar 

  • Talbot NJ, Kershaw MJ, Wakley GE, Devries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydro- phobin involved in surface interactions during infection- related development of Magnaporthe grisea. Plant Cell 8:985-999

    PubMed  CAS  Google Scholar 

  • Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378:244

    CAS  Google Scholar 

  • Theobald MR, Crittenden PD, Hunt AP, Tang YS, Dragosits U, Sutton MA (2006) Ammonia emissions from a Cape fur seal colony, Cape Cross, Namibia. Geophys Res Lett 33:L03812

    Google Scholar 

  • Thune P, Solberg Y, McFadden N, Staerfelt F, Sandberg M (1982) Perfume allergy due to oak moss and other lichens. Contact Dermatitis 8:396-400

    PubMed  CAS  Google Scholar 

  • Thüs H (2002) Taxonomie, Verbreitung und Ökologie sili- coler Süßwasserflechten im außeralpinen Mitteleuropa. Bibl Lichenol 85:1-214

    Google Scholar 

  • Tibell L (2001) Photobiont association and molecular phy- logeny of the lichen genus Chaenotheca. Bryologist 104:191-198

    Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002a) Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol 154:185-195

    CAS  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002b) Hydrophob- ins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol 35:247-259

    PubMed  CAS  Google Scholar 

  • Tschermak-Woess E (1978) Myrmecia reticulata as a phy- cobiont and free-living - free-living Trebouxia - the problem of Stenocybe septata. Lichenologist 10:69-79

    Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) Handbook of lichenology, vol 1. CRC, Boca Raton, pp 39-92

    Google Scholar 

  • Tveten U, Brynildsen LI, Amundsen I, Bergan TDS (1998) Economic consequences of the Chernobyl accident in Norway in the

    Google Scholar 

  • decade 1986-1995. J Environ Radioact 41:233-255

    Google Scholar 

  • van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenogist 34:141-154

    Google Scholar 

  • Vezda A (1975) Foliikole Flechten aus Tanzania (OstAfrika). Folia Geobot Phytotaxon 10:383-432

    Google Scholar 

  • Walker TR, Young SD, Crittenden PD, Zhang H (2003) Anthropogenic metal enrichment of snow and soil in north-eastern European Russia. Environ Poll 121:11-21

    CAS  Google Scholar 

  • Walker TR, Crittenden PD, Young SD, Prystina T (2006a) An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north-eastern European Russia. Ecol Indic 6:369-387

    CAS  Google Scholar 

  • Walker TR, Habeck JO, Karjalainen TP, Virtanen T, Solo- vieva N, Jones V, Kuhry P, Ponomarev VI, Mikkola K, Nikula A, Patova E, Crittenden PD, Young SD, Ingold T (2006) Perceived and measured levels of environmental pollution: interdisciplinary research in the Subarctic lowlands of northeast European Russia. Ambio 35:220-228

    Google Scholar 

  • Warren G, Wolber P (1991) Molecular aspects of microbial ice nucleation. Mol Microbiol 5:239-243

    PubMed  CAS  Google Scholar 

  • Wessels JGH (1996) Fungal hydrophobins: proteins that function at an interface. Trends Plant Sci 1:9-15

    Google Scholar 

  • Whiteford J, Spanu P (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391-400

    PubMed  CAS  Google Scholar 

  • Wolf E (2003) Partnererkennung und Inkorporation des Photobionten bei der Pilz-Endocyanose Geospiphon pyriforme. Dissertation, University of Darmstadt Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625-646

    Google Scholar 

  • Wösten HAB, Wessels JGH (1997) Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363-374

    Google Scholar 

  • Wösten HAB, DeVries OMH, Wessels JGH (1993) Interfacial self-assembly of a fungal hydrophobin into a hydro- phobic rodlet layer. Plant Cell 5:1567-1574

    PubMed  Google Scholar 

  • Yamamoto Y, Mizugichi R, Yamada Y (1985) Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347-3348

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Higuchi M, Kinoshita Y, Yoshimura I (1993) Using lichen tissue cultures in modern biology. Bryologist 96:384-393

    Google Scholar 

  • Yamamoto Y, Kinoshita Y, Takahagi T, Kroken S, Kurokawa T, Yoshimura I (1998) Factors affecting discharge and germination of lichen ascospores. J Hattori Bot Lab 85:267-278

    Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017-1020

    PubMed  CAS  Google Scholar 

  • Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599-610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosmarie Honegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Honegger, R. (2009). Lichen-Forming Fungi and Their Photobionts. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_16

Download citation

Publish with us

Policies and ethics