Skip to main content

Photoactivated Perylenequinone Toxins in Plant Pathogenesis

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Fungi that parasitize plants have at their disposal a large and diverse set of tools required for successful colonization of their hosts. Among the most effective of these strategies is the production of phytotoxic compounds that play multiple roles in plant disease. These range from toxins that facilitate infection by suppressing normal plant defense pathways to ones that alter normal metabolic processes and symptom expression to toxins that directly kill the cells of the host, allowing for colonization of dead tissue. Among the most intriguing of the well studied plant pathogen toxins are the photoactivated perylenequinones. These substances, the product of the polyketide pathway in ascomycete fungi, are colored compounds that are converted to their toxic state through photoactivation. Although studied most for their involvement in plant pathogenesis, photoactivated perylenequinones have also been recovered from saprophytic species, suggesting that they may have broad functions in fungi. This chapter summarizes the current state of knowledge of the mode of action, biosynthesis, regulation, and understanding of cellular resistance to this group of compounds, with an emphasis on studies done on the perylenequinone cercosporin, produced by members of the genus Cercospora, a large and successful group of foliar plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahonsi MO, Maurhofer M, Boss D, Defago G (2005) Relationship between aggressiveness of Stagnospora sp. isolates on field and hedge bindweeds, and in vitro production of fungal metabolites cercosporin, elsino- chrome A and leptosphaerodione. Eur J Plant Pathol 111:203-215

    Article  CAS  Google Scholar 

  • Arnone A, Assante G, Di Modugno V, Merlini L, Nasini G (1988) Perylenequinones from cucumber seedlings infected with Cladosporium cucumerinum. Phyto- chemistry 6:1675-1678

    Google Scholar 

  • Arst HN, Jr., Penalva MA (2003) pH regulation in Aspergil- lus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224-231

    Article  PubMed  CAS  Google Scholar 

  • Balis C, Payne MG (1971) Triglycerides and cercosporin from Cercospora beticola: fungal growth and cer- cosporin production. Phytopathology 61:1477-1484

    Article  CAS  Google Scholar 

  • Ballarlo P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a centrai regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650-1657

    Google Scholar 

  • Batchvarova RB, Reddy VS, Bennett J (1992) Cellular resistance in rice to cercosporin, a toxin of Cercospora. Phytopathology 82:642-646

    Google Scholar 

  • Bellus D (1979) Physical quenchers of singlet molecular oxygen. Adv Photochem 11:105-205

    Google Scholar 

  • Berenbaum MR (1987) Charge of the light brigade: pho- totoxicity as a defense against insects. In: Heitz JR, Downum KR (eds) Light-activated pesticides. American Chemical Society, Washington, D.C., pp 206-216

    Chapter  Google Scholar 

  • Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129-134

    Article  PubMed  CAS  Google Scholar 

  • Bilski P, Daub ME, Chignell CF (2002) Direct detection of singlet oxygen via its phosphorescence from cellular and fungal cultures. Methods Enzymol 352:41-52

    Article  PubMed  CAS  Google Scholar 

  • Birch AJ (1967) Biosynthesis of polyketides and related compounds. Science 156:202-206

    Article  PubMed  CAS  Google Scholar 

  • Bok JW, Keller NP (2004) Global regulation of secondary metabolic gene clusters. Eukaryot Cell 3:527-535

    Article  PubMed  CAS  Google Scholar 

  • Brodhagen M, Keller NP (2006) Signalling pathways connecting mycotoxin production and sporulation. Mol Plant Pathol 7:285-301

    Article  PubMed  CAS  Google Scholar 

  • Callahan T, Rose M, Meade M, Ehrenshaft M, Upchurch R (1999) CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cer- cosporin production, resistance, and virulence on soybean. Mol Plant-Microbe Interact 12:901-910

    Article  PubMed  CAS  Google Scholar 

  • Calpouzos L (1966) Action of oil in the control of plant diseases. Annu Rev Phytopathol 4:369-390 Calpouzos L, Stalknecht GF (1967) Symptoms of Cer- cospora leaf spot of sugar beets influenced by light intensity. Phytopathology 57:799-800

    Google Scholar 

  • Chen H, Lee M-H, Daub ME, Chung K-R (2007a) Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol Microbiol 64:755-770

    Article  PubMed  CAS  Google Scholar 

  • Chen HQ, Lee MH, Chung KR (2007b) Functional characterization of three genes encoding putative oxidore- ductases required for cercosporin toxin biosynthesis in the fungus Cercospora nicotianae. Microbiology 153:2781-2790

    Article  PubMed  CAS  Google Scholar 

  • Choquer M, Lahey KA, Chen H-L, Cao L, Ueng PP, Daub ME, Chung KR (2005) The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin toxin biosynthesis and fungal virulence in Cercospora nicotianae. Mol Plant-Microbe Interact 18:468-476

    Article  PubMed  CAS  Google Scholar 

  • Choquer M, Lee M-H, Bau H-J, Chung K-R (2007) Deletion of a MFS transporter-like gene in Cercospora nico- tianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett 581:489-494

    Article  PubMed  CAS  Google Scholar 

  • Chung KR (2003) Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Appl Environ Microbiol 69:1187-1196

    Article  PubMed  CAS  Google Scholar 

  • Chung KR, Jenns AE, Ehrenshaft M, Daub ME (1999) A novel gene required for cercosporin toxin resistance in the fungus Cercospora nicotianae. Mol Gen Genet 262:382-389

    PubMed  CAS  Google Scholar 

  • Chung KR, Daub ME, Kuchler K, Schüller C (2003a) The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor. Biochem Biophys Res Commun 302:302-310

    Google Scholar 

  • Chung KR, Ehrenshaft M, Wetzel DK, Daub ME (2003b) Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae. Mol Gen Genet 270:103-113

    Google Scholar 

  • Clark RA, Stephens TR, Bowden EF, Daub ME (1995) Electrochemical reduction of the phytotoxin cercosporin. J Electoanal Chem 389:205-208

    Article  Google Scholar 

  • Daub ME (1982a) Cercosporin, a photosensitizing toxin from Cercospora species. Phytopathology 72:370-374

    Google Scholar 

  • Daub ME (1982b) Peroxidation of tobacco membrane lip- ids by the photosensitizing toxin, cercosporin. Plant Physiol 69:1361-1364 Daub ME (1987) Resistance of fungi to the photosensitizing toxin, cercosporin. Phytopathology 77:1515-1520

    Google Scholar 

  • Daub ME (1987) Resistance of fungi to the photosensitizing toxin, cercosporin. Phytopathology 77:1515-1520

    Google Scholar 

  • Daub ME, Briggs SP (1983) Changes in tobacco cell membrane composition and structure caused by the fungal toxin, cercosporin. Plant Physiol 71:763-766

    Article  PubMed  CAS  Google Scholar 

  • Daub ME, Ehrenshaft M (2000) The photoactivated Cer- cospora toxin cercosporin: Contributions to plant disease and fundamental biology. Annu Rev Phytopathol 38:461-490

    Article  PubMed  CAS  Google Scholar 

  • Daub ME, Hangarter RP (1983) Production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol 73:855-857

    Google Scholar 

  • Daub ME, Leisman GB, Clark RA, Bowden EF (1992) Reductive detoxification as a mechanism of fungal resistance to singlet-oxygen-generating photosensitizers. Proc Natl Acad Sci USA 89:9588-9592

    Google Scholar 

  • Daub ME, Li M, Bilski P, Chignell CF (2000) Dihydrocer- cosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora. Photochem Photobiol 71:135-140

    Article  PubMed  CAS  Google Scholar 

  • Davis VM, Stack ME (1991) Mutagenicity of stemphyltoxin III, a metabolite of Alternaria alternata. Appl Environ Microbiol 57:180-182

    PubMed  CAS  Google Scholar 

  • Dekkers LA, You B-J, Gowda VS, Liao H-L, Lee M-H, Bau H-J, Ueng PP, Chung K-R (2007) The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD-dependent monooxygenase domains mediates cercosporin toxin biosynthesis. Fungal Genet Biol 44:444-454

    Article  PubMed  CAS  Google Scholar 

  • Denslow SA, Walls AA, Daub ME (2005) Regulation of bio- synthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol Mol Plant Pathol 66:244-255

    Article  CAS  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957-6962

    Article  PubMed  CAS  Google Scholar 

  • Diwu Z (1995) Novel theraputic and diagnostic applications of hypocrellins and hypericins. Photochem Pho- tobiol 61:529-539

    Google Scholar 

  • Dobrowolski DC, Foote CS (1983) Chemistry of singlet oxygen 46. Quantum yield of cercosporin- sensitized singlet oxygen formation. Angew Chem 95:729-730

    Google Scholar 

  • Dowzer CD, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701-5709

    PubMed  CAS  Google Scholar 

  • Echandi E (1959) La chasparria de los cafetos causada por el hongo Cercospora coffeicola Berk and Cooke. Turrialba 9:54-67

    Google Scholar 

  • Ehrenshaft M, Daub ME (2001) Isolation of PDX2, a second novel gene in the pyridoxine biosynthesis pathway of eukaryotes, archaebacteria, and a subset of eubacteria. J Bacteriol 183:3383-3390

    Article  PubMed  CAS  Google Scholar 

  • Ehrenshaft M, Upchurch RG (1991) Isolation of light- enhanced cDNA clones of Cercospora kikuchii. Appl Environ Microbiol 57:2671-2676

    PubMed  CAS  Google Scholar 

  • Ehrenshaft M, Jenns AE, Daub ME (1995) Targeted gene disruption of carotenoid biosynthesis in Cercospora nicotianae reveals no role for cartenoids in photo- sensitizer resistance. Mol Plant-Microbe Interact 8:569-575

    Article  CAS  Google Scholar 

  • Ehrenshaft M, Bilski P, Li M, Chignell CF, Daub ME (1999) A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci USA 96:9374-9378

    Article  PubMed  CAS  Google Scholar 

  • Fajola AO (1978) Cercosporin, a phytotoxin from Cercospora species. Physiol Plant Pathol 79:157-164

    Google Scholar 

  • Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomyc- ete Shiraia bambusicola. J Antibiotics 59:351-354

    Google Scholar 

  • Foote CS, Denny RW, Weaver L, Chang Y, Peters J (1970) Quenching of singlet oxygen. Ann NY Acad Sci 171:139-148 Giese AC (1980) Hypericism. Photochem Photobiol Rev 5:229-255

    Google Scholar 

  • Giese AC (1981) The photobiology of Blepharisma. Photochem Photobiol Rev 6:139-180

    CAS  Google Scholar 

  • Hartman PE, Dixon WJ, Dahl TA, Daub ME (1988) Multiple modes of photodynamic action by cercosporin. Pho- tochem Photobiol 47:699-703

    Article  CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002) Bcmfsl, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68:4996-5004

    Article  PubMed  CAS  Google Scholar 

  • Heitz JR, Down um KR (eds) (1995) Light-activated pest control. American Chemical Society, Washington, D.C. Herranz S, Rodriguez JM, Bussink H-J, Sanchez-Ferrero JC, Arst HNJ, Penalva MA, Vincent O (2005) Arrestin- related proteins mediate pH signaling in fungi. Proc Natl Acad Sci USA 102:12141-12146

    Google Scholar 

  • Herrero S, Daub ME (2007) Genetic manipulation of vitamin B-6 biosynthesis in tobacco and fungi uncovers limitations to up-regulation of the pathway. Plant Sci 172:609-620

    Article  CAS  Google Scholar 

  • Herrero S, Amnuaykanjanasin A, Daub ME (2007) Identification of genes differentially expressed in the phy- topathogenic fungus Cercospora nicotianae between cercosporin toxin-resistant and -susceptible strains. FEMS Microbiol Lett 275:326-337

    Article  PubMed  CAS  Google Scholar 

  • Hudson JB, Towers GHN (1991) Therapeutic potential of plant photosensitizers. Pharmacol Ther 49:181-222

    Article  PubMed  CAS  Google Scholar 

  • Hudson JB, Imperial V, Haugland RP, Diwu Z (1997) Antiviral properties of photoactive perylenequinones. Pho- tochem Photobiol 65:352-354

    Article  CAS  Google Scholar 

  • Hughes K, Negrotto D, Daub ME, Meeusen R (1984) Free radical stress response in paraquat-sensitive and resistant tobacco plants. Environ Exp Bot 24:151-157

    Article  CAS  Google Scholar 

  • Ito T (1981) Dye binding and photodynamic action. Photochem Photobiol 33:947-955

    Article  Google Scholar 

  • Jain AK, Lim G, Langford M, Jain SK (2002) Effect of high- glucose levels on protein oxidation in cultured lens cells, and in crystalline and albumin solution and its inhibition by vitamin B6 and N-acetylcysteine: Its possible relevance to cataract formation in diabetes. Free Radic Biol Med 33:1615-1621

    Article  PubMed  CAS  Google Scholar 

  • Jain SK, Lim G (2001) Pyridoxine and pyridoxamine inhibit superoxide radicals and prevent lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 30:232-237

    Article  PubMed  CAS  Google Scholar 

  • Jenns AE, Daub ME (1995) Characterization of mutants of Cercospora nicotianae sensitive to the toxin cercosporin. Phytopathology 85:906-912

    Article  CAS  Google Scholar 

  • Jenns AE, Daub ME, Upchurch RG (1989) Regulation of cercosporin accumulation in culture by medium and temperature manipulation. Phytopathology 79:213-219

    Article  CAS  Google Scholar 

  • Jenns AE, Scott DL, Bowden EF, Daub ME (1995) Isolation of mutants of the fungus Cercospora nicotianae altered in their response to singlet- oxygen-generating photosensitizers. Photochem Photobiol 61:488-493

    Article  CAS  Google Scholar 

  • Keller N, Hohn T (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17-29

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937-947

    Article  PubMed  CAS  Google Scholar 

  • Kuyama S, Tamura T (1957) Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. J Am Chem Soc 79:5725-5726

    Article  CAS  Google Scholar 

  • Leisman GB, Daub ME (1992) Singlet oxygen yields, optical properties, and phototoxicity of reduced derivatives of the photosensitizer cercosporin. Photochem Pho- tobiol 55:373-379

    Article  CAS  Google Scholar 

  • Li PZX, Xu NLJ, Meng DL, Sha Y (2006) A new perylenequinone from the fruit bodies of Bulgaria inquinans. J Asian Nat Prod Res 8:743-746

    Article  Google Scholar 

  • Li WM, Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc Natl Acad Sci USA 100:14593-14598

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Macino G (1997) White collar-2, a partner in blue light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98-107

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141-150

    Article  PubMed  CAS  Google Scholar 

  • Liu WZ, Shen YX, Liu XF, Chen YT, Xie JL (2001) A new perylenequinone from Hypomyces sp. Chin Chem Lett 12:431-432

    CAS  Google Scholar 

  • Lousberg RJJ, Weiss U, Salmink. CA, Arnone A, Merlini L, Nasini G (1971) The structure of cercosporin, a naturally occurring quinone. Chem Commun 71:1463-1464

    Google Scholar 

  • Macri F, Vianello A (1979) Photodynamic activity of cer- cosporin on plant tissues. Plant Cell Environ 2:267-271

    Article  Google Scholar 

  • Mamnun YM, Pandjaitan R, Mahe Y, Delahodde A, Kuchler K (2002) The yeast zinc finger regulators Pdr1p and Pdr3p control

    Google Scholar 

  • pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol. Microbiol. 46:1429-1440

    Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17-32

    PubMed  CAS  Google Scholar 

  • Mathey A, Lukins PB (2001) Spatial distribution of peryl- enequinones in lichens and extended quinones in quincyte using confocal fluorescence microscopy. Micron 32:107-113

    Article  PubMed  CAS  Google Scholar 

  • McCormick SP, Taylor SL, Plattner R D, Beremand MN (1990) Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol 56:702-706

    PubMed  CAS  Google Scholar 

  • Mitchell TK, Chilton WS, Daub ME (2002) Biodegradation of the polyketide toxin cercosporin. Appl Environ Microbiol 68:4173-4181 Mitchell TK, Alejos-Gonzalez F, Gracz HS, Danehower DA, Daub ME, Chilton WS (2003) Xanosporic acid, an intermediate in bacterial degradation of the fungal phototoxin cercosporin. Phytochemistry 62:723-732

    Article  Google Scholar 

  • Okubo A, Yamazaki S, Fuwa K (1975) Biosynthesis of cercosporin. Agr Biol Chem 39:1173-1175

    Article  CAS  Google Scholar 

  • Payne GA, Brown MP (1998) Genetics and physiology of afla- toxin biosynthesis. Annu Rev Phytopathol 36:329-362

    Article  PubMed  CAS  Google Scholar 

  • Raab O (1900) The action of fluorescent material on infusorien. Z Biol 39:524-546

    CAS  Google Scholar 

  • Rawlings BJ, Reese PB, Ramer SE, Vederas JC (1989) Comparison of fatty acid and polyketide biosynthesis: stereochemistry of cladosporin and oleic acid formation in Cladosporium cladosporioides. J Am Chem Soc 111:3382-3390

    Article  CAS  Google Scholar 

  • Robeson DJ, Jalal MAF (1992) Formation of entisophlei- chrome by Cladosporium herbarum isolated from sugar beet. Biosci Biotechnol Biochem 56:949-952

    Article  CAS  Google Scholar 

  • Robeson JR, Jalal MAF, Simpson RB (1993) Methods for identifying cercosporin-degrading microorganisms. US Patent 5,262,306, Nov 1993

    Google Scholar 

  • Rodriguez-Landa JF, Contreras CA (2003) A review of clinical and experimental observations about antidepres- sant actions and side effects produced by Hypericum perforatum extracts. Phytomedicine 10:688-699

    Article  PubMed  CAS  Google Scholar 

  • Shim WB, Dunkle LD (2003) CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant-Microbe Interact 16:760-768

    Article  PubMed  CAS  Google Scholar 

  • Sollod CC, Jenns AE, Daub ME (1992) Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl Environ Microbiol 58:444-449

    PubMed  CAS  Google Scholar 

  • Spikes JD (1989) Photosensitization. In: Smith KC (ed) The science of photobiology, 2nd edn. Plenum, New York, pp 79-110

    Google Scholar 

  • Stack ME, Mazzola EP, Page SW, Pohland AE, Highet RS, Tempesta MS, Corely DG (1986) Mutagenic perylene- quinone metabolites of Alternaria alternata: altertox- ins I, II, and III. J Nat Prod 49:866-871

    Article  PubMed  CAS  Google Scholar 

  • Steinkamp MP, Martin SS, Hoefert LL, Ruppel EG (1979) Ultrastructure of lesions produced in leaves of Beta vulgaris. Physiol Plant Pathol 15:13-16

    Article  Google Scholar 

  • Stierle AC, Cardellina JH (1989) Phytotoxins from Alternaria alternata, a pathogen of spotted knapweed. J Nat Prod 52:42-47

    Article  CAS  Google Scholar 

  • Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Bio- phys Acta 1621:1-8

    CAS  Google Scholar 

  • Tabuchi H, Tajimi A, Ichihara A (1994) Phytotoxic metabolites isolated from Scolecotrichum graminis Fuckel. Biosci Biotech Biochem 58:1956-1959

    Article  CAS  Google Scholar 

  • Taylor TV, Mitchell TK, Daub ME (2006) An oxidoreductase is involved in cercosporin degradation by the bacterium Xanthomonas campestris pv. zinniae. Appl Environ Microbiol 72:6070-6078

    Article  PubMed  CAS  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassioutou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dis- mutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225-233

    Article  PubMed  CAS  Google Scholar 

  • Thorold CA (1940) Cultivation of bananas under shade for the control of leaf spot disease. Trop Agric Trinidad 17:213-214

    Google Scholar 

  • Toone WM, Jones N (1999) AP-1 transcription factors in yeast. Curr Opin Genet Dev 9:55-61

    Article  PubMed  CAS  Google Scholar 

  • Truscott TG (1990) New trends in photobiology: the photo- physics and photochemistry of the carotenoids. J Photochem Photobiol B 6:359-371

    Article  CAS  Google Scholar 

  • Upchurch RG, Walker DC, Rollins JA, Ehrenshaft M, Daub ME (1991) Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl Environ Microbiol 57:2940-2945

    PubMed  CAS  Google Scholar 

  • Upchurch RG, Rose MS, Eweida M, Callahan TM (2002) Transgenic assessment of CFP-mediated cercosporin export and resistance in a cercosporin-sensitive fungus. Curr Genet 41:25-30

    Article  PubMed  CAS  Google Scholar 

  • Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis AK, Panopoulos N (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccha- romyces cerevisiae. Curr Genet 39:127-136

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Ebizuka Y (2004) Unprecedented metabolism of chain length determination in fungal aromatic polyketide synthases. Chem Biol 11:1101-1106

    Article  PubMed  CAS  Google Scholar 

  • Weiss U, Merlini L, Nasini G (1987) Naturally occurring perylenequinones. In: Herz W, Grisebach H, Kirby GW, Tamm CH, (eds) Progress in the chemistry of organic natural products, vol 52. Springer, Vienna, pp 1-71

    Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663-1021

    Article  CAS  Google Scholar 

  • Williamson JD, Scandalios JG (1992) Differential response of maize catalases and superoxide dismutases to the pho- toactivated fungal toxin cercosporin. Plant J 2:351-358

    PubMed  CAS  Google Scholar 

  • Wu H, Lao XF, Wang QW, Lu RR (1989) The shiraiachromes: novel fungal perylenequinone pigments from Shiraia bambusicola. J Nat Prod 5:948-951

    Article  Google Scholar 

  • Yamazaki S, Ogawa T (1972) The chemistry and stereochemistry of cercosporin. Agric Biol Chem 36:1707-1718

    Article  CAS  Google Scholar 

  • Yamazaki S, Okube A, Akiyama Y, Fuwa K (1975) Cercosporin, a novel photodynamic pigment isolated from Cercospora kikuchii. Agric Biol Chem 39:287-288

    Article  CAS  Google Scholar 

  • Yoshihara T, Shimanuki T, Araki T, Sakamura S (1975) Phleichrome, a new phytotoxic compound produced by Cladosporium phlei. Agric Biol Chem 39:1683-1684

    Article  CAS  Google Scholar 

  • You B-J, Lee M-H, Chung K-R (2008) Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse

    Google Scholar 

  • environmental signals. Can J Microbiol 54:259-269

    Google Scholar 

  • Yu J-H, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437-458

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021-1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. Daub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daub, M.E., Chung, KR. (2009). Photoactivated Perylenequinone Toxins in Plant Pathogenesis. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_11

Download citation

Publish with us

Policies and ethics