Skip to main content

Graph Multiset Transformation as a Framework for Massively Parallel Computation

  • Conference paper
Graph Transformations (ICGT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5214))

Included in the following conference series:

Abstract

In this paper, graph multiset transformation is introduced and studied as a novel type of parallel graph transformation. The basic idea is that graph transformation rules may be applied to all or at least some members of a multiset of graphs simultaneously providing a computational step with the possibility of massive parallelism in this way. As a consequence, graph problems in the class NP can be solved by a single computation of polynomial length for each input graph.

The authors would like to acknowledge that their research is partially supported by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations) funded by the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.M.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Addison-Wesley, Reading (2002)

    MATH  Google Scholar 

  3. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. IEEE Press, Piscataway (2006)

    Google Scholar 

  4. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  5. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing — New Computing Paradigms. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  6. Kreowski, H.J.: A sight-seeing tour of the computational landscape of graph transformation. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 119–137. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Kreowski, H.J., Kuske, S., Schürr, A.: Nested graph transformation units. International Journal on Software Engineering and Knowledge Engineering 7(4), 479–502 (1997)

    Article  Google Scholar 

  8. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, Applications, Languages and Tools, vol. 2, pp. 607–638. World Scientific, Singapore (1999)

    Google Scholar 

  9. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics. Formal Aspects of Computing 11(6), 690–723 (1999)

    Article  MATH  Google Scholar 

  10. Kuske, S.: More about control conditions for transformation units. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 323–337. Springer, Heidelberg (2000)

    Google Scholar 

  11. Kuske, S.: Transformation Units—A Structuring Principle for Graph Transformation Systems. PhD thesis, University of Bremen (2000)

    Google Scholar 

  12. Habel, A., Plump, D.: Computational completeness of programming languages based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Plump, D.: Termination of graph rewriting is undecidable. Fundamenta Informaticae 33(2), 201–209 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Godard, E., Métivier, Y., Mosbah, M., Sellami, A.: Termination detection of distributed algorithms by graph relabelling systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 106–119. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Ehrig, H., Ehrig, K., Taentzer, G., de Lara, J., Varró, D., Varró-Gyapai, S.: Termination criteria for model transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 49–63. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kreowski, HJ., Kuske, S. (2008). Graph Multiset Transformation as a Framework for Massively Parallel Computation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds) Graph Transformations. ICGT 2008. Lecture Notes in Computer Science, vol 5214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87405-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87405-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87404-1

  • Online ISBN: 978-3-540-87405-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics