Skip to main content

Computing the Minimal Tiling Path from a Physical Map by Integer Linear Programming

  • Conference paper
Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

Abstract

We study the problem of selecting the minimal tiling path (MTP) from a set of clones arranged in a physical map. We formulate the constraints of the MTP problem in a graph theoretical framework, and we derive an optimization problem that is solved via integer linear programming. Experimental results show that when we compare our algorithm to the commonly used software FPC, the MTP produced by our method covers a higher portion of the genome, even using a smaller number of MTP clones. These results suggest that if one would employ the MTP produced by our method instead of FPC’s in a clone-by-clone sequencing project, one would reduce by about 12% the sequencing cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice physical map data, ftp://ftp.genome.arizona.edu/pub/fpc/rice/

  2. FPC-MTP tutorial webpage, http://www.agcol.arizona.edu/software/fpc/userGuide/mtpdemo/

  3. Asano, T.: Dynamic programming on intervals. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 199–207. Springer, Heidelberg (1991)

    Google Scholar 

  4. Bentley, D.R.: Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16(6), 545–552 (2006)

    Article  Google Scholar 

  5. Bozdag, S., Close, T.J., Lonardi, S.: A compartmentalized approach to the assembly of physical maps. In: Proceedings of BIBE, pp. 218–225 (2007)

    Google Scholar 

  6. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  7. Engler, F.W., Hatfield, J., et al.: Locating sequence on FPC maps and selecting a minimal tiling path. Genome Res. 13(9), 2152–2163 (2003)

    Article  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability; a guide to the theory of NP-completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Green, E.: Strategies for the Systematic Sequencing of Complex Genomes. Nature Reviews Genetics 2, 573–583 (2001)

    Google Scholar 

  10. Gregory, S., Sekhon, M., et al.: A physical map of the mouse genome. Nature 418, 743–750 (2002)

    Google Scholar 

  11. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. J. Algorithms 17(3), 424–446 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. International Human Genome Sequencing Consortium. A physical map of the human genome. Nature 409, 934–941 (2001)

    Google Scholar 

  13. Krzywinski, M., Wallis, J., et al.: Integrated and Sequence-Ordered BAC- and YAC-Based Physical Maps for the Rat Genome. Genome Res. 14(4), 766–779 (2004)

    Article  Google Scholar 

  14. Madishetty, K., Condamine, P., et al.: Towards a physical map of the barley “gene space” (in preparation, 2008)

    Google Scholar 

  15. Marra, M., Kucaba, T., et al.: A map for sequence analysis of the Arabidopsis thaliana genome. Nat. Genet. 22(3), 265–270 (1999)

    Article  Google Scholar 

  16. Nelson, W., Soderlund, C.: Software for restriction fragment physical maps. In: The Handbook of Genome Mapping: Genetic and Physical Mapping, pp. 285–306 (2005)

    Google Scholar 

  17. Pop, M., Salzberg, S.: Bioinformatics challenges of new sequencing technology. Trends Genet. 24(3), 142–149 (2008)

    Google Scholar 

  18. Ren, C., Lee, M., et al.: A BAC-Based Physical Map of the Chicken Genome. Genome Res. 13(12), 2754–2758 (2003)

    Article  Google Scholar 

  19. Soderlund, C., Humphray, S., et al.: Contigs Built with Fingerprints, Markers, and FPC V4.7. Genome Res. 10(11), 1772–1787 (2000)

    Article  Google Scholar 

  20. Sulston, J., Mallett, F., et al.: Software for genome mapping by fingerprinting techniques. Comput. Appl. Biosci. 4(1), 125–132 (1988)

    Google Scholar 

  21. Sundquist, A., Ronaghi, M., et al.: Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS ONE 2(5), 484 (2007)

    Article  Google Scholar 

  22. Venter, J.C., Smith, H.O., Hood, L.: A new strategy for genome sequencing. Nature 381(6581), 364–366 (1996)

    Article  Google Scholar 

  23. Warren, R.L., Varabei, D., et al.: Physical map-assisted whole-genome shotgun sequence assemblies. Genome Res. 16(6), 768–775 (2006)

    Article  Google Scholar 

  24. Wu, Y., Bhat, P., et al.: Efficient and accurate construction of genetic linkage maps from noisy and missing genotyping data. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 395–406. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using de bruijn graphs. Genome Res. 18(5), 821–829 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bozdag, S., Close, T.J., Lonardi, S. (2008). Computing the Minimal Tiling Path from a Physical Map by Integer Linear Programming. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics