Skip to main content

Efficiently Computing Arbitrarily-Sized Robinson-Foulds Distance Matrices

  • Conference paper
Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

Abstract

In this paper, we introduce the HashRF(p,q) algorithm for computing RF matrices of large binary, evolutionary tree collections. The novelty of our algorithm is that it can be used to compute arbitrarily-sized (p ×q) RF matrices without running into physical memory limitations. In this paper, we explore the performance of our HashRF(p,q) approach on 20,000 and 33,306 biological trees of 150 taxa and 567 taxa trees, respectively, collected from a Bayesian analysis. When computing the all-to-all RF matrix, HashRF(p,q) is up to 200 times faster than PAUP* and around 40% faster than HashRF, one of the fastest all-to-all RF algorithms. We show an application of our approach by clustering large RF matrices to improve the resolution rate of consensus trees, a popular approach used by biologists to summarize the results of their phylogenetic analysis. Thus, our HashRF(p,q) algorithm provides scientists with a fast and efficient alternative for understanding the evolutionary relationships among a set of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001)

    Article  Google Scholar 

  2. Hillis, D.M., Heath, T.A., John, K.S.: Analysis and visualization of tree space. Syst. Biol. 54(3), 471–482 (2005)

    Article  Google Scholar 

  3. Stockham, C., Wang, L.S., Warnow, T.: Statistically based postprocessing of phylogenetic analysis by cluste ring. In: Proceedings of 10th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB 2002), pp. 285–293 (2002)

    Google Scholar 

  4. Swofford, D.L.: PAUP*: Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Underland, Massachusetts, Version 4.0 (2002)

    Google Scholar 

  5. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates (2003)

    Google Scholar 

  6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal Of Classification 2, 7–28 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pattengale, N., Gottlieb, E., Moret, B.: Efficiently computing the Robinson-Foulds metric. Journal of Computational Biology 14(6), 724–735 (2007)

    Article  MathSciNet  Google Scholar 

  8. Sul, S.J., Williams, T.L.: A randomized algorithm for comparing sets of phylogenetic trees. In: Proc. Fifth Asia Pacific Bioinformatics Conference (APBC 2007), pp. 121–130 (2007)

    Google Scholar 

  9. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)

    Article  Google Scholar 

  10. Lewis, L.A., Lewis, P.O.: Unearthing the molecular phylodiversity of desert soil green algae (chlorophyta). Syst. Bio. 54(6), 936–947 (2005)

    Article  Google Scholar 

  11. Soltis, D.E., Gitzendanner, M.A., Soltis, P.S.: A 567-taxon data set for angiosperms: The challenges posed by bayesian analyses of large data sets. Int. J. Plant Sci. 168(2), 137–157 (2007)

    Article  Google Scholar 

  12. Karypis, G.: CLUTO—software for clustering high-dimensional datasets. Internet Website (last accessed, June 2008), http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sul, SJ., Brammer, G., Williams, T.L. (2008). Efficiently Computing Arbitrarily-Sized Robinson-Foulds Distance Matrices. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics