Advertisement

Discovering Modes of an Image Population through Mixture Modeling

  • Mert R. Sabuncu
  • Serdar K. Balci
  • Polina Golland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output is a small number of template images that represent different modes in a population. This is in contrast with traditional approaches that assume a single template to construct atlases. We validate and explore the algorithm in two experiments. First, we employ iCluster to partition a data set of 416 whole brain MR volumes of subjects aged 18-96 years into three sub-groups, which mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the second experiment, we run iCluster on a group of 30 patients with dementia and 30 age-matched healthy controls. The algorithm produced three modes that mainly corresponded to a sub-population of healthy controls, a sub-population of patients with dementia and a mixture group that contained both types. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional “modes.”

Keywords

Transformation Model Template Image Middle Aged Group Image Population Single Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allassonniere, A., Amit, Y., Trouve, A.: Towards a coherent statistical framework for dense deformable template estimation. J.R. Statist. Soc.B 69, 3–29 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K.: Incorporating prior knowledge into image registration. Neuro Image 6(4), 344–352 (1997)Google Scholar
  3. 3.
    Blezek, D., Miller, J.: Atlas stratification. Medical Image Analysis 11(5), 443–457 (2007)CrossRefGoogle Scholar
  4. 4.
    Collins, D.L., et al.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. comput. assist. tomogr. 18(2), 192–205 (1994)CrossRefGoogle Scholar
  5. 5.
    De Craene, M., et al.: Multi-subject registration for unbiased statistical atlas construction. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 655–662. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Davatzikos, C., et al.: A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography 20(1), 88–97 (1996)CrossRefGoogle Scholar
  7. 7.
    DeCarli, C., et al.: Longitudinal changes in lateral ventricular volume in datients with dementia of the alzheimer type. Neurology 42 (1992)Google Scholar
  8. 8.
    Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004)CrossRefGoogle Scholar
  9. 9.
    Guimond, A., Meunier, F., Thirion, J.P.: Average brain models: A convergence study. Technical Report 3731, INRIA (1999)Google Scholar
  10. 10.
    Heckemann, R.A., et al.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  11. 11.
    Ibanez, L., et al.: The ITK Software Guide (2005)Google Scholar
  12. 12.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphism atlas construction for computational anatomy. Neuro Image 23, 151–160 (2004)Google Scholar
  13. 13.
    Marcus, D.S., et al.: Open Access Series of Imaging Studies (OASIS): Cross-Sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. Journal of Cognitive Neuroscience 19, 1498–1507 (2007)CrossRefGoogle Scholar
  14. 14.
    Park, H., et al.: Least biased target selection in probabilistic atlas construction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 419–426. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Woods, R.P., et al.: Automated Image Registration: II. Intersubject Validation of Linear and Nonlinear Models. Comp. Assisted Tomography 22(1), 153–165 (1998)CrossRefGoogle Scholar
  16. 16.
    Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transaction of Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  17. 17.
    Scahill, R.I., et al.: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994 (2003)CrossRefGoogle Scholar
  18. 18.
    Studholme, C., Cardenas, V.: A template free approach to volumetric spatial normalization of brain anatomy. Pattern Rec. Letters 25, 1191–1202 (2004)CrossRefGoogle Scholar
  19. 19.
    Tsai, A., et al.: An EM algorithm for shape classification based on level sets. Medical Image Analysis 9, 491–502 (2005)CrossRefGoogle Scholar
  20. 20.
    Twining, C.J., et al.: A unified information-theoretic approach to groupwise non-rigid registration and model building. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 1–14. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Woods, R.P., et al.: Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data. Human Brain Mapping 8(2-3), 73–79 (1999)CrossRefGoogle Scholar
  22. 22.
    Zöllei, L., et al.: Efficient population registration of 3d data. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 291–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mert R. Sabuncu
    • 1
  • Serdar K. Balci
    • 1
  • Polina Golland
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMITUSA

Personalised recommendations