Advertisement

Gaze-Contingent 3D Control for Focused Energy Ablation in Robotic Assisted Surgery

  • Danail Stoyanov
  • George P. Mylonas
  • Guang-Zhong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

The use of focused energy delivery in robotic assisted surgery for atrial fibrillation requires accurate prescription of ablation paths. In this paper, an original framework based on fusing human and machine vision for providing gaze-contigent control in robotic assisted surgery is provided. With the proposed method, binocular eye tracking is used to estimate the 3D fixations of the surgeon, which are further refined by considering the camera geometry and the consistency of image features at reprojected fixations. Nonparametric clustering is then used to optimize the point distribution to provide an accurate ablation path. For experimental validation, a study where eight subjects prescribe an ablation path on the right atrium of the heart using only their gaze control is presented. The accuracy of the proposed method is validated using a phantom heart model with known 3D ground truth.

Keywords

Robotic Assisted Surgery Atrial Fibrillation Gaze-Contingent Control 3D Depth Recovery Focused Energy Delivery 

Supplementary material

Electronic Supplementary Material (6,543 KB)

References

  1. 1.
    Grossi, E.A., et al.: Minimally invasive mitral valve surgery: a 6-year experience with 714 patients. Ann Thorac Surg. 74, 660–664 (2002)CrossRefGoogle Scholar
  2. 2.
    Smith, J.M.: Robots and lasers: The future of cardiac tissue ablation. Int. J. Med. Robotics Comp. Assist Surg. 2, 329–332 (2006)CrossRefGoogle Scholar
  3. 3.
    Mylonas, G., Darzi, A., Yang, G.-Z.: Gaze-contingent soft tissue deformation tracking for minimally invasive robotic surgery. Comp. Aided Surg. 11(5), 256–266 (2006)CrossRefGoogle Scholar
  4. 4.
    Mylonas, G., Stoyanov, D., Deligianni, F., Darzi, A., Yang, G.-Z.: Gaze-Contingent Soft Tissue Deformation Tracking for Minimally Invasive Robotic Surgery. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 843–850. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Lerotic, M., Chung, A.J., Mylonas, G., Yang, G.-Z.: pq-space Based Non-Photorealistic Rendering for Augmented Reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Yang, G.-Z., Dempre-Marco, L., Hu, X.-P., Rowe, A.: Visual Search: Psychophysical Models. Practical Applications, Image Vision Comput. 20(4), 291–305 (2002)CrossRefGoogle Scholar
  7. 7.
    Stoyanov, D., Darzi, A., Yang, G.-Z.: A practical approach towards accurate dense 3D depth recovery in robotic laparoscopic surgery. Comp. Aid Surg. 10(4), 199–208 (2005)CrossRefGoogle Scholar
  8. 8.
    Stoyanov, D., Mylonas, G., Deligianni, F., Yang, G.-Z.: Soft-Tisse Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Mylonas, G., Darzi, A., Yang, G.-Z.: Gaze Contingent Depth Recovery and Motion Stabilisation for Minimally Invasive Robotic Surgery. In: Yang, G.-Z., Jiang, T. (eds.) MIAR 2004. LNCS, vol. 3150, pp. 311–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Khan, A.Z., Crawford, J.D.: Occular Dominance Reverses as a Function of Horizontal Gaze Angle. Vision Research 41, 1743–1748 (2001)CrossRefGoogle Scholar
  12. 12.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Towards Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  13. 13.
    Georgescu, B., Shimshoni, I., Meer, P.: Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. In: ICCV 2003, vol. 1, pp. 456–463 (2003)Google Scholar
  14. 14.
    Horn, B.: Closed-form Solution of Absolute Orientation Using Unit Quarternions. J. Opt. Soc. Am. 5(7), 629–642 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Danail Stoyanov
    • 1
  • George P. Mylonas
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.Institute of Biomedical EngineeringImperial College LondonLondonUK

Personalised recommendations