Advertisement

Automatic Guidance of an Ultrasound Probe by Visual Servoing Based on B-Mode Image Moments

  • Rafik Mebarki
  • Alexandre Krupa
  • Christophe Collewet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

We propose a new visual servo approach to automatically control in real-time the full motion of a 2D ultrasound (US) probe held by a medical robot in order to reach a desired image of motionless soft tissue object in B-mode ultrasound imaging. Combinations of image moments of the observed object cross-section are used as feedback information in the visual control scheme. These visual features are extracted in real-time from the US image thanks to a fast image segmentation method. Simulations performed with a static US volume containing an egg-shaped object, and ex-vivo experiments using a robotized US probe that interacts with a motionless rabbit heart immersed in water, show the validity of this new approach and its robustness to different perturbations. This method shows promise for a variety of US-guided medical interventions that require real-time servoing.

Keywords

Active Contour Ultrasound Probe Active Contour Model Visual Servoing Percutaneous Cholecystostomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Electronic Supplementary Material (6,242 KB)

References

  1. 1.
    Abolmaesumi, P., Salcudean, S.E., Zhu, W.-H., Sirouspour, M.R.: Image-guided control of a robot for medical ultrasound. IEEE Trans. on Robotics 18(1), 11–23 (2002)CrossRefGoogle Scholar
  2. 2.
    Nelson, T.R., Pretorius, D.H.: Three-dimensional ultrasound imaging. Ultrasound in Medicine and Biol. 24(9), 1243–1270 (1998)CrossRefGoogle Scholar
  3. 3.
    Hong, J., Dohi, T., Hashizume, M., Konishi, K., Hata, N.: An ultrasound-driven needle insertion robot for percutaneous cholecystostomy. Physics in Medicine and Biology 49(3), 441–455 (2004)CrossRefGoogle Scholar
  4. 4.
    Vitrani, M.A., Morel, G., Bonnet, N., Karouia, M.: A robust ultrasound-based visual servoing approach for automatic guidance of a surgical instrument with in vivo experiments. In: Biomedical Robotics and Biomecatronics BioRob, The first IEEE RAS/EMBS, pp. 35–40 (February 2006)Google Scholar
  5. 5.
    Bachta, A., Krupa, A.: Towards ultrasound image-based visual servoing. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2006, pp. 4112–4117 (May 2006)Google Scholar
  6. 6.
    Krupa, A., Fichtinger, G., Hager, G.D.: Real-time tissue tracking with b-mode ultrasound using speckle and visual servoing. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 1–8. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar
  8. 8.
    Mebarki, R., Krupa, A., Chaumette, F.: Image moments-based ultrasound visual servoing. In: IEEE int. Conf. on Robotics and Automation ICRA 2008 (May 2008)Google Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Journal of Computer Vision 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  12. 12.
    Xu, C., Prince, L.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7, 359–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tauber, C., Batatia, H., Morin, G., Ayache, A.: Robust b-spline snakes for ultrasound image segmentation. IEEE Computers in Cardiology 31, 325–328 (2004)Google Scholar
  14. 14.
    Tang, J., Millington, S., Acton, S., Crandall, J., Hurwitz, S.: Surface extraction and thickness measurement of the articular cartilage from mr images using directional gradient vector flow snakes. IEEE Trans. on Biomedical Engineering 53(5), 896–906 (2006)CrossRefGoogle Scholar
  15. 15.
    Precioso, F., Barlaud, M., Blu, T., Unser, M.: Robust real-time segmentation of images and videos using a smoothing-spline snake-based algorithm. IEEE Trans. on Image Processing (2005)Google Scholar
  16. 16.
    Cohen, L., Cohen, I.: Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)CrossRefGoogle Scholar
  17. 17.
    Pierrot, F., Dombre, E., Degoulange, E., Urbain, L., Caron, P., Boudet, S., Gariepy, J., Megnien, J.: Hippocrate: A safe robot arm for medical applications with force feedback. Medical Image Analysis (MedIA) 3(3), 285–300 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rafik Mebarki
    • 1
  • Alexandre Krupa
    • 1
  • Christophe Collewet
    • 1
  1. 1.IRISAINRIA Rennes-Bretagne AtlantiqueRennesFrance

Personalised recommendations