Advertisement

Visualization Tools for High Angular Resolution Diffusion Imaging

  • David W. Shattuck
  • Ming-Chang Chiang
  • Marina Barysheva
  • Katie L. McMahon
  • Greig I. de Zubicaray
  • Matthew Meredith
  • Margaret J. Wright
  • Arthur W. Toga
  • Paul M. Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.

Keywords

Visualization Tool Orientation Distribution Function HARDI Data Tensor Model High Angular Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    LeBihan, et al.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)CrossRefGoogle Scholar
  2. 2.
    Basser, et al.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103(3), 247–254 (1994)CrossRefGoogle Scholar
  3. 3.
    Tuch, et al.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)CrossRefGoogle Scholar
  4. 4.
    Descoteaux, et al.: Apparent diffusion coefficients from high angular resolution diffusion images: Estimation and applications. Research Report 5681, INRIA (2005)Google Scholar
  5. 5.
    Descoteaux, et al.: A linear and regularized odf estimation algorithm to recover multiple fibers in q-ball imaging. Research Report 5768, INRIA (2005)Google Scholar
  6. 6.
    McGraw, et al.: Von Mises-Fisher mixture model of the diffusion ODF. In: ISBI 2006, April 6, 2006, pp. 65–68 (2006)Google Scholar
  7. 7.
    Alexander, et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)CrossRefGoogle Scholar
  8. 8.
    Xu, et al.: Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50(1), 175–182 (2003)CrossRefGoogle Scholar
  9. 9.
    Zhang, et al.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)CrossRefGoogle Scholar
  10. 10.
    Jones, et al.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999)CrossRefGoogle Scholar
  11. 11.
    Smith, et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1), S208–S219 (2004)CrossRefGoogle Scholar
  12. 12.
    Chiang, M.C., et al.: Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27(4), 442–456 (2008)CrossRefGoogle Scholar
  13. 13.
    Chen, et al.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: CVPR, pp. 588–593 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David W. Shattuck
    • 1
  • Ming-Chang Chiang
    • 1
  • Marina Barysheva
    • 1
  • Katie L. McMahon
    • 2
  • Greig I. de Zubicaray
    • 2
  • Matthew Meredith
    • 2
  • Margaret J. Wright
    • 3
  • Arthur W. Toga
    • 1
  • Paul M. Thompson
    • 1
  1. 1.Laboratory of Neuro Imaging, Dept. of NeurologyUCLALos AngelesUSA
  2. 2.Centre for Magnetic ResonanceUniversity of QueenslandBrisbaneAustralia
  3. 3.Queensland Institute of Medical ResearchBrisbaneAustralia

Personalised recommendations