Physical-Space Refraction-Corrected Transmission Ultrasound Computed Tomography Made Computationally Practical

  • Shengying Li
  • Klaus Mueller
  • Marcel Jackowski
  • Donald Dione
  • Lawrence Staib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)


Transmission Ultrasound Computed Tomography (CT) is strongly affected by the acoustic refraction properties of the imaged tissue, and proper modeling and correction of these effects is crucial to achieving high-quality image reconstructions. A method that can account for these refractive effects solves the governing Eikonal equation within an iterative reconstruction framework, using a wave-front tracking approach. Excellent results can be obtained, but at considerable computational expense. Here, we report on the acceleration of three Eikonal solvers (Fast Marching Method (FMM), Fast Sweeping Method (FSM), Fast Iterative Method (FIM)) on three computational platforms (commodity graphics hardware (GPUs), multi-core and cluster CPUs), within this refractive Transmission Ultrasound CT framework. Our efforts provide insight into the capabilities of the various architectures for acoustic wave-front tracking, and they also yield a framework that meets the interactive demands of clinical practice, without a loss in reconstruction quality.


Transmission Ultrasound Mammography GPU Acceleration 


  1. 1.
    Andersen, A., Kak, A.: Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the ART Algorithm. Ultrasound Imaging 6, 81–94 (1984)CrossRefGoogle Scholar
  2. 2.
    Andersen, A.: A Ray Tracing Approach to Restoration and Resolution Enhancement in Experimental Ultrasound Tomography. Ultrasound Imaging 12, 268–291 (1990)CrossRefGoogle Scholar
  3. 3.
    Boue, M., Dupuis, P.: Markov Chain Approximations for Deterministic Control Problems with Affine Dynamics and Quadratic Costs in the Control. SIAM J. Numerical Analysis 36, 667–695 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Denis, F., Basset, O., Gimenez, G.: Ultrasonic Transmission Tomography in Refracting Media: Reduction of Refraction Artifacts by Curved-ray Techniques. IEEE Trans. Medical Imaging 14, 173–188 (1995)CrossRefGoogle Scholar
  5. 5.
    Duric, N., Littrup, P., Babkin, A., et al.: Development of Ultrasound Tomography for Breast Imaging: Technical Assessment. Medical Physics 32(5), 1375–1386 (2005)CrossRefGoogle Scholar
  6. 6.
    Duric, N., Littrup, P., et al.: Detection of Breast Cancer with Ultrasound Tomography: First Results with the Computerized Ultrasound Risk Evaluation (C.U.R.E) Prototype. Medical Physics 34(2), 733–785 (2007)CrossRefGoogle Scholar
  7. 7.
    Jeong, W., Fletcher, P., Tao, R., Whitaker, R.: Interactive Visualization of Volumetric White Matter Connectivity in DT-MRI Using a Parallel-hardware Hamilton-Jacobi Solver. IEEE Trans. Visualization and Computer Graphics 13(6), 1480–1487 (2007)CrossRefGoogle Scholar
  8. 8.
    Li, S., Mueller, K., Jackowski, M., et al.: Fast Marching Method to Correct for Refraction in Ultrasound Computed Tomography. In: IEEE Symp. Biomed. Img., pp. 896–899 (2006)Google Scholar
  9. 9.
    Pan, X.: Unified Reconstruction Theory for Diffraction Tomography, with Consideration of Noise Control. J. Optical Society America A 15, 2312–2326 (1998)CrossRefGoogle Scholar
  10. 10.
    Purcell, T., Buck, I., Mark, W., Hanrahan, P.: Ray Tracing on Programmable Graphics Hardware. ACM Trans. Graphics 21(3), 703–712 (2002)CrossRefGoogle Scholar
  11. 11.
    Quan, Y., Huang, L.: Sound-speed Tomography Using First-arrival Transmission Ultrasound for a Ring Array. In: Proc. SPIE Medical Imaging, vol. 6513 (2007)Google Scholar
  12. 12.
    Sethian, J.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge Monographs on Applied and Computational Mathematics (1999)Google Scholar
  13. 13.
    Sethian, J., Vladimirsky, A.: Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms. SIAM J. of Numerical Analysis 41(1), 325–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) Implementation of the Fast Marching Algorithm. Journal of Computational Physics 212, 393–399 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhao, H.: Fast Sweeping Method for Eikonal Equations. Mathematics of Computation 74, 603–627 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shengying Li
    • 1
  • Klaus Mueller
    • 1
  • Marcel Jackowski
    • 2
  • Donald Dione
    • 3
  • Lawrence Staib
    • 4
  1. 1.Stony Brook UniversityStony Brook
  2. 2.University of Sao PauloSao PauloBrazil
  3. 3.Ultrasound Detection Systems LLCMadison
  4. 4.Yale UniversityNew Haven

Personalised recommendations