Advertisement

Estimation of Ground-Glass Opacity Measurement in CT Lung Images

  • Yuanjie Zheng
  • Chandra Kambhamettu
  • Thomas Bauer
  • Karl Steiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

We propose to measure quantitatively the opacity property of each pixel in a ground-glass opacity tumor from CT images. Our method results in an opacity map in which each pixel takes opacity value of \([0\textrm{-}1]\). Given a CT image, our method accomplishes the estimation by constructing a graph Laplacian matrix and solving a linear equations system, with assistance from some manually drawn scribbles for which the opacity values are easy to determine manually. Our method resists noise and is capable of eliminating the negative influence of vessels and other lung parenchyma. Experiments on 40 selected CT slices of 11 patients demonstrate the effectiveness of this technique. The opacity map produced by our method is invaluable in practice. From this map, many features can be extracted to describe the spatial distribution pattern of opacity and used in a computer-aided diagnosis system.

Keywords

Lung Parenchyma Solid Nodule Compute Tomography Attenuation Linear Equation System Compute Tomography Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sobue, T., et al.: Screening for lung cancer with low-dose helical computed tomography: Anti-lung cancer association project. Journal of Clinical Oncology 20, 911–920 (2002)CrossRefGoogle Scholar
  2. 2.
    Nakata, M., Sawada, S., Yamashita, M., Saeki, H., Kurita, A., Takashima, S., Tanemoto, K.: Objective radiologic analysis of ground-glass opacity aimed at curative limited resection for small peripheral non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery 129, 1226–1231 (2005)CrossRefGoogle Scholar
  3. 3.
    Jang, H.J., Lee, K.S., Kwon, O.J., Rhee, C.H., Shim, Y.M., Han, J.: Bronchioloalveolar carcinoma: focal area of ground-glass attenuation at thin-section ct as an early sign. Radiology 199, 485–488 (1996)CrossRefGoogle Scholar
  4. 4.
    Engeler, C.E., Tashjian, J.H., Trenkner, S.W., Walsh, J.W.: Ground-glass opacity of the lung parenchyma: a guide to analysis with high-resolution ct. American Journal of Roentgenology 160, 249–251 (1993)CrossRefGoogle Scholar
  5. 5.
    Henschke, C.I., Yankelevitz, D.F., Mirtcheva, R., McGuinness, G., McCauley, D., Miettinen, O.S.: CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. Am. J. Roentgenol. 178, 1053–1057 (2002)CrossRefGoogle Scholar
  6. 6.
    Matsuguma, H., et al.: Objective definition and measurement method of ground-glass opacity for planning limited resection in patients with clinical stage IA adenocarcinoma of the lung. European Journal of Cardio-thoracic Surgery 25, 1102–1106 (2004)CrossRefGoogle Scholar
  7. 7.
    Zhao, B., Gamsu, G., Ginsberg, M.S., Jiang, L., Schwartz, L.H.: Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm. Journal of Applied Clinical Medical Physics 4, 248–260 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhou, J., Chang, S., Metaxas, D.N., Zhao, B., Schwartz, L.H., Ginsberg, M.S.: Automatic detection and segmentation of ground glass opacity nodules. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 784–791. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Grady, L., Schiwietz, T., Aharon, S., Westerman, R.: Random walks for interactive alpha-matting. In: VIIP 2005 (2005)Google Scholar
  10. 10.
    Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In: CVPR 2006 (2006)Google Scholar
  11. 11.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1768–1783 (2006)CrossRefGoogle Scholar
  12. 12.
    Zheng, Y., Baloch, S., Englander, S., Schnall, M.D., Shen, D.: Segmentation and classification of breast tumor using dynamic contrast-enhanced MR image. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 393–401. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yuanjie Zheng
    • 1
  • Chandra Kambhamettu
    • 1
  • Thomas Bauer
    • 2
  • Karl Steiner
    • 3
  1. 1.Department of Computer ScienceUniversity of DelawareNewarkUSA
  2. 2.Helen F. Graham Cancer Center, Christiana Care Health ServicesNewarkUSA
  3. 3.Delaware Biotechnology InstituteUniversity of DelawareNewarkUSA

Personalised recommendations