Advertisement

Abstract

The very hot and power-hungry x-ray filaments in today’s computed tomography (CT) scanners constrain their design to be big and stationary. What if we built a CT scanner that could be deployed at the scene of a car accident to acquire tomographic images before moving the victim? Recent developments in nanotechnology have shown that carbon nanotubes can produce x-rays at room temperature, and with relatively low power needs. We propose a design for a portable and flexible CT scanner made up of an addressable array of tiny x-ray emitters and detectors. In this paper, we outline a basic design, propose a strategy for reconstruction, and demonstrate the concept using a software simulation of the scanner. We also raise a number of issues that still need to be overcome to build such a scanner.

Keywords

computed tomography x-ray reconstruction carbon nanotubes 

References

  1. 1.
    Zhang, J., Yang, G., Cheng, Y., Gao, B., Qiu, Q., Lee, Y.Z., Lu, J.P., Zhou, O.: Stationary scanning x-ray source based on carbon nanotube field emitters. Applied Physics Letters 86(184104) (2005)Google Scholar
  2. 2.
    Sinha, N., Yeow, J.T.W.: Carbon nanotubes for biomedical applications. IEEE Transactions on Nanobioscience 4(3), 180–195 (2005)CrossRefGoogle Scholar
  3. 3.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  4. 4.
    Rinzler, A.G., Hafner, J.H., Nikolaev, P., Nordlander, P., Colbert, D.T., Smalley, R.E., Lou, L., Kim, S.G., Tománek, D.: Unraveling nanotubes: Field emission from an atomic wire. Science 269(5230), 1550–1553 (1995)CrossRefGoogle Scholar
  5. 5.
    de Heer, W.A., Châtelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270(5239), 1179–1180 (1995)CrossRefGoogle Scholar
  6. 6.
    Chernozatonskii, L.A., Gulyaev, Y.V., Kosakovskaja, Z.J., Sinitsyn, N.I., Torgashov, G.V., Zakharchenko, Y.F., Fedorov, E.A., Val’chuk, V.P.: Electron field emission from nanofilament carbon films. Chemical Physics Letters 233, 63–68 (1995)CrossRefGoogle Scholar
  7. 7.
    Sun, J., Zhang, Z., Hou, S., Zhang, G., Gu, Z., Zhao, X., Liu, W., Xue, Z.: Work function of single-walled carbon nanotubes determined by field emission microscopy. Applied Physics A 75(4), 479–483 (2002)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Yang, G., Lee, Y.Z., Chang, S., Lu, J.P., Zhou, O.: Multiplexing radiography using a carbon nanotube based x-ray source. Applied Physics Letters 89(064106) (September 2006)Google Scholar
  9. 9.
    Quan, E., Lalush, D.S.: Evaluation of hexgonal and square geometries for motion-free arrayed-source x-ray micro-CT. In: Proc.of the IEEE International Symposium of Biomedical Imaging (ISBI 2007), pp. 221–224 (2007)Google Scholar
  10. 10.
    Abramoff, M.D., Viergever, M.A.: Computation and visualization of three dimensional motion in the orbit. IEEE Trans. Med. Imag. 21(4) (2002)Google Scholar
  11. 11.
    Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image processing with Image. J. Biophotonics International 11(7), 36–42 (2004)Google Scholar
  12. 12.
    Defrise, M., Kinahan, P.E., Townsend, D.W.: Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans. Med. Imag. 16(2), 145–158 (1997)CrossRefGoogle Scholar
  13. 13.
    Defrise, M., Liu, X.: A fast rebinning algorithm for 3D positron emission tomography using John’s equation. Inverse Problems 15(4), 1047–1065 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cho, Z.H., Ra, J.B., Hilal, S.K.: True three-dimensional reconstruction (TTR) – application of algorithm toward full utilization of oblique rays. IEEE Trans. Med. Imag. MI-2(1), 6–18 (1983)CrossRefGoogle Scholar
  15. 15.
    Kinahan, P.E., Rogers, J.G.: Analytic 3D image reconstruction using all detected events. IEEE Transactions on Nuclear Science 36(1), 964–968 (1989)CrossRefGoogle Scholar
  16. 16.
    Lewitt, R.M., Muehllehner, G., Karp, J.S.: Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Physics in Medicine and Biology 39(3), 321–339 (1994)CrossRefGoogle Scholar
  17. 17.
    Defrise, M., Geissbuhler, A., Townsend, D.W.: A performance study of 3D reconstruction algorithms for positron emission tomography. Physics in Medicine and Biology 39(3), 305–320 (1994)CrossRefGoogle Scholar
  18. 18.
    Baghaei, H., Wong, W.H., Uribe, J., Wang, Y., Liu, Y., Xing, T., Ramirez, R., Xie, S., Kim, S.: A comparison of four image reconstruction algorithms for detection of small lesions in brain phantom. In: Nuclear Science Symposium Conference Record, vol. 4, pp. 2584–2588 (October 2003)Google Scholar
  19. 19.
    Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances. SPIE Press, Bellingham (2003)Google Scholar
  20. 20.
    Baillot, Y., Eliason, J.J., Schmidt, G.S., Swan, I.J.E., Brown, D., Julier, S., Livingston, M.A., Rosenblum, L.: Evaluation of the ShapeTape tracker for wearable, mobile interaction. In: Proc. of the IEEE Virtual Reality (2003)Google Scholar
  21. 21.
    Ramotar, A., Orchard, J.: General geometry CT reconstruction. In: Arabnia, H.R. (ed.) Proc. of the International Conference on Image Processing and Computer Vision (IPCV 2006), vol. 1, pp. 95–99 (June 2006)Google Scholar
  22. 22.
    Orchard, J., Ramotar, A.: Autocorrecting reconstruction for flexible CT scanners. In: Proc. of the IEEE International Symposium of Biomedical Imaging (ISBI 2007), pp. 804–807 (April 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jeff Orchard
    • 1
  • John T. W. Yeow
    • 2
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Systems Design EngineeringUniversity of WaterlooCanada

Personalised recommendations