Advertisement

Optimal Acquisition Schemes in High Angular Resolution Diffusion Weighted Imaging

  • Vesna Prčkovska
  • Alard F. Roebroeck
  • W. L. P. M. Pullens
  • Anna Vilanova
  • Bart M. ter Haar Romeny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

The recent challenge in diffusion imaging is to find acquisition schemes and analysis approaches that can represent non-gaussian diffusion profiles in a clinically feasible measurement time. In this work we investigate the effect of b-value and the number of gradient vector directions on Q-ball imaging and the Diffusion Orientation Transform (DOT) in a structured way using computational simulations, hardware crossing-fiber diffusion phantoms, and in-vivo brain scans. We observe that DOT is more robust to noise and independent of the b-value and number of gradients, whereas Q-ball dramatically improves the results for higher b-values and number of gradients and at recovering larger angles of crossing. We also show that Laplace-Beltrami regularization has wide applicability and generally improves the properties of DOT. Knowledge of optimal acquisition schemes for HARDI can improve the utility of diffusion weighted MR imaging in the clinical setting for the diagnosis of white matter diseases and presurgical planning.

Keywords

Gradient Direction Angular Error High Angular Resolution Centrum Semiovale Corona Radiata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-540-85990-1_2_MOESM1_ESM.zip (1.7 mb)
Electronic Supplementary Material (1,780 KB)

References

  1. 1.
    Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45, 770 (2001)CrossRefGoogle Scholar
  2. 2.
    Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  3. 3.
    Frank, L.R.: Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 45(6), 935–939 (2001)CrossRefGoogle Scholar
  4. 4.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)CrossRefGoogle Scholar
  5. 5.
    Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)CrossRefGoogle Scholar
  6. 6.
    Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 36(3), 1086–1103 (2006)CrossRefGoogle Scholar
  7. 7.
    Jansons, K.M., Alexander, D.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031–1046 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Söderman, O., Jönsson, B.: Restricted diffusion in cylindirical geometry. J. Magn. Reson. B 117(1), 94–97 (1995)CrossRefGoogle Scholar
  9. 9.
    Pullens, W., Roebroeck, A., Goebel, R.: Kissing or crossing: validation of fiber tracking using ground truth hardware phantoms. In: Proc. ISMRM, p. 1479 (2007)Google Scholar
  10. 10.
    Jones, D., Horsfield, M., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42, 515–525 (1999)CrossRefGoogle Scholar
  11. 11.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)CrossRefGoogle Scholar
  12. 12.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)CrossRefGoogle Scholar
  13. 13.
    Savadjiev, P., Campbell, J.S., Pike, G.B., Siddiqi, K.: 3D curve inference for diffusion MRI regularizationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vesna Prčkovska
    • 1
  • Alard F. Roebroeck
    • 2
  • W. L. P. M. Pullens
    • 2
    • 3
  • Anna Vilanova
    • 1
  • Bart M. ter Haar Romeny
    • 1
  1. 1.Dept. of Biomedical EngineeringEindhoven Univ. of TechnologyThe Netherlands
  2. 2.Maastricht Brain Imaging Center, Dept. of Cognitive Neuroscience, Faculty of PsychologyMaastricht UniversityThe Netherlands
  3. 3.Brain Innovation B.V.MaastrichtThe Netherlands

Personalised recommendations