Skip to main content

Radiation Dosimetry: Formulations, Models, and Measurements

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2679 Accesses

Abstract

As measurements of doses received by internal tissues of the body cannot be made, internal dose estimates must be performed via calculations and the use of theoretical models. Standardized models of the human body, and often standardized models of radiopharmaceutical behavior in the body, are employed to describe and predict the radiation doses received by various tissues in the body. The use of agreed-upon standardized models will result in calculations that are traceable and reproducible, but one must bear in mind that calculated dose estimates are only as good as the input assumptions and models employed as input to the calculations. One must also remember that these calculated doses are doses to a model, not a patient. In diagnostic applications, this is generally acceptable. All input data has some associated uncertainty, and the calculated results reflect the inherent uncertainty in the data as well as those related to the application of standardized models of the body to a variety of patients who vary substantially in size, age, and other physical characteristics (this subject is discussed in detail later in this chapter). When the radiation doses are relatively low, this kind of uncertainty is tolerable, because if calculated answers are not entirely accurate, the consequences for the patient will be small or even nonexistent (depending on what one believes about radiation risk at low doses and dose rates). In therapeutic applications, however, more attention to accuracy and precision is needed, as with these higher doses, the chances of reaching or exceeding an organ’s threshold for expressing radiation damage are more significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loevinger R, Budinger T, Watson E (1988) MIRD primer for absorbed dose calculations. Society of Nuclear Medicine, New York

    Google Scholar 

  2. International Commission on Radiological Protection (1960) Report of committee II on permissible dose for internal radiation. Health Phys. 3

    Google Scholar 

  3. International Commission on Radiological Protection (1979) Limits for Intakes of Radionuclides by Workers. ICRP Publication 30, Pergamon, New York

    Google Scholar 

  4. International Commission on Radiological Protection (1996) Age-dependent doses to members of the public from intake of radionuclides: Part 4, inhalation dose coefficients. ICRP Publication 71, Pergamon, New York

    Google Scholar 

  5. Stabin MG (2008) Radiation protection and dosimetry, an introduction to health physics. Springer, New York

    Google Scholar 

  6. United States Nuclear Regulatory Commission, Part 20, Title 10, Code of Federal Regulations

    Google Scholar 

  7. Cormack J, Towson JET, Flower MA (2004) Radiation protection and dosimetry in clinical practice. In: Ell PJ, Gambhir SS (eds) Nuclear medicine in clinical diagnosis and treatment, 3rd edn. Churchill Livingston, Philadelphia, PA, pp 1871–1902

    Google Scholar 

  8. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85(3):294–310

    Article  PubMed  CAS  Google Scholar 

  9. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  10. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37(3):538–546

    PubMed  CAS  Google Scholar 

  11. Snyder W, Ford M, Warner G (1978) Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised, Society of Nuclear Medicine, New York

    Google Scholar 

  12. International Commission on Radiological Protection (1975) Report of the Task Group on Reference Man. ICRP Publication 23, Pergamon, New York, NY

    Google Scholar 

  13. International Commission on Radiological Protection (2003) Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89, Pergamon, New York, NY

    Google Scholar 

  14. Snyder W, Ford M, Warner G, Watson S (1975) “S,” absorbed dose per unit cumulated activity for selected radionuclides and organs, MIRD Pamphlet No. 11, Society of Nuclear Medicine, New York, NY

    Google Scholar 

  15. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  16. Stabin M (1996) MIRDOSE – the personal computer software for use in internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    PubMed  CAS  Google Scholar 

  17. Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K (1995) Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907

    Google Scholar 

  18. Yoriyaz H, Stabin MG, dos Santos A (2001) Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42(4):662–669

    PubMed  CAS  Google Scholar 

  19. Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47(1):89–106

    Article  PubMed  Google Scholar 

  20. Lee C, Williams JL, Lee C, Bolch WE (2005) The UF series of tomographic computational phantoms of pediatric patients. Med Phys 32(12):3537–3548

    Article  PubMed  Google Scholar 

  21. Segars JP (2001) Development and Application of the New Dynamic NURBS-based Cardiac-Torso (NCAT) Phantom, PhD dissertation. The University of North Carolina

    Google Scholar 

  22. Spiers FW, Whitwell JR, Beddoe AH (1978) Calculated dose factors for radiosensitive tissues in bone irradiated by surface-deposited radionuclides. Phys Med Biol 23:481–494

    Article  PubMed  CAS  Google Scholar 

  23. Eckerman K, Stabin M (2000) Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214

    Article  PubMed  CAS  Google Scholar 

  24. Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW (2002) Evolution and status of bone and marrow dose models cancer biotherapy and radiopharmaceuticals 17(4):427–434

    Article  CAS  Google Scholar 

  25. Watson EE, Stabin MG, Davis JL, Eckerman KF (1989) A model of the peritoneal cavity for use in internal dosimetry. J Nucl Med 30:2002–2011

    PubMed  CAS  Google Scholar 

  26. Stabin MG (1994) A model of the prostate gland for use in internal dosimetry. J Nucl Med 35(3):516–520

    PubMed  CAS  Google Scholar 

  27. Bouchet L, Bolch W, Weber D, Atkins H, Poston J Sr (1999) MIRD pamphlet no 15: radionuclide S values in a revised dosimetric model of the adult head and brain. J Nucl Med 40:62S–101S

    PubMed  CAS  Google Scholar 

  28. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G (2003) MIRD pamphlet no. 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 44:1113–1147

    PubMed  Google Scholar 

  29. Stabin MG, Konijnenberg M (2000) Re-evaluation of absorbed fractions for photons and electrons in small spheres. J Nucl Med 41:149–160

    PubMed  CAS  Google Scholar 

  30. Stabin MG, da Luz CQPL (2002) New decay data for internal and external dose assessment. Health Phys 83(4):471–475

    Article  PubMed  CAS  Google Scholar 

  31. Crawford DJ, Richmond CR (1981) Epistemological considerations in the extrapolation of metabolic data from non-humans to humans. In: Watson E, Schlafke-Stelson A, Coffey J, Cloutier R (eds) Third International Radiopharmaceutical Dosimetry Symposium. US Department of Health, Education, and Welfare, pp 191–197

    Google Scholar 

  32. Wegst A (1981) Collection and presentation of animal data relating to internally distributed radionuclides. In: Watson E, Schlafke-Stelson A, Coffey J, Cloutier R (eds) Third International Radiopharmaceutical Dosimetry Symposium. US Dept of Health, Education, and Welfare, pp 198–203

    Google Scholar 

  33. Kirschner A, Ice R, Beierwaltes W (1975) Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16(3):248–249

    CAS  Google Scholar 

  34. Siegel J, Thomas S, Stubbs J et al (1999) MIRD pamphlet no 16 – techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    PubMed  CAS  Google Scholar 

  35. Stabin MG (2008) Fundamentals of nuclear medicine dosimetry. Springer, New York

    Google Scholar 

  36. Sparks RB, Aydogan B (1999) Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In: Oak Ridge TN, Stelson A, Stabin M, Sparks R (eds) Sixth International Radiopharmaceutical Dosimetry Symposium. pp 705–716

    Google Scholar 

  37. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, Robertson JS, Howell RW, Wessels BW, Fisher DR, Weber DA, Brill AB (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J NucI Med 4037S–4061S

    Google Scholar 

  38. Stabin M (2008) Uncertainties in internal dose calculations for radiopharmaceuticals. J Nucl Med 49:853–860

    Article  PubMed  Google Scholar 

  39. Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H (2001) Biodistribution and dosimetry of 99mTc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor–expressing malignancies. J Nucl Med 42:1722–1727

    PubMed  Google Scholar 

  40. Breitz HB, Wendt WE III, Stabin MG, Shen S, Erwin WD, Rajendran JG, Eary JF, Durack L, Delpassand E, Martin W, Meredith RF (2006) 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med 47:534–542

    PubMed  CAS  Google Scholar 

  41. Aydogan B, Sparks RB, Stubbs JB, Miller LF (1999) Uncertainty analysis for absorbed dose from a brain receptor agent. In: Oak Ridge TN, Stelson A, Stabin M, Sparks R (eds) Sixth International Radiopharmaceutical Dosimetry Symposium. pp 732–740

    Google Scholar 

  42. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308

    PubMed  CAS  Google Scholar 

  43. Yuni KD, Scott JW, Michael Ljungberg, Kenneth FK, Kenneth Zasadny, Mark SK (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46:840–849

    Google Scholar 

  44. Liu A, Williams L, Lopatin G, Yamauchi D, Wong J, Raubitschek A (1999) A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151–1153

    PubMed  CAS  Google Scholar 

  45. Guy MJ, Flux GD, Papavasileiou P, Flower MA, Ott RJ (2003) RMDP: a dedicated package for I-131 SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharm 18(1):61–69

    Article  PubMed  CAS  Google Scholar 

  46. Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523

    PubMed  CAS  Google Scholar 

  47. Bielajew A, Rogers D (1987) PRESTA: the parameter reduced electron-step transport algorithm for electron monte carlo transport. Nucl Instrum Methods B18:165–181

    CAS  Google Scholar 

  48. Briesmeister JF (ed) (2000) MCNP – A General Monte Carlo N-Particle Transport Code, Version 4C. LA-13709-M, Los Alamos National Laboratory

    Google Scholar 

  49. Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia MG, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch JP, Williams DC, Wright D, Yoshida H (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278

    Article  Google Scholar 

  50. Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G (2005) Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol 50(5):947–958

    Article  PubMed  Google Scholar 

  51. Lidia Strigari, Marco D’Andrea, Carlo Ludovico Maini, Rosa Sciuto, Marcello Benassi (2006) Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Medical Physics 33(6):1857–1866

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Stabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stabin, M.G. (2010). Radiation Dosimetry: Formulations, Models, and Measurements. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics