Skip to main content

Radiopharmacy: Basics

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2871 Accesses

Abstract

A radiopharmaceutical is a radioactive compound that has two components, a radionuclide and a pharmaceutical; it is used for the diagnosis and treatment of human diseases. All radiopharmaceuticals are legend drugs and are subject to all regulations that apply to other drugs. The difference between a radiochemical and a radiopharmaceutical is that the former is not administered to humans due to the possible lack of sterility and nonpyrogenicity; any material administered to humans must be sterile and nonpyrogenic. A radiopharmaceutical may be a radioactive element like 133Xe or a labeled compound such as 99mTc-labeled compounds [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson MA (1998) Textbook on nuclear medicine. Lippincott-Raven, Philadelphia

    Google Scholar 

  2. Saha GB (2004) Fundamentals of radiopharmacy, 5th edn. Springer, Berlin

    Google Scholar 

  3. Bernier D, Christian P, Langan LJ (1998) Nuclear medicine – technology and techniques, 3rd edn. Mosby, St. Louis

    Google Scholar 

  4. Meikle S, Kench P, Kassiou M, Banati R (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45–R61

    Article  PubMed  CAS  Google Scholar 

  5. Karesh S (1996) Radiopharmaceuticals – a tutorial. Loyola University Medical Education Network, Chicago

    Google Scholar 

  6. Saha GB, MacIntyre WJ, Go RT (1992) Cyclotrons and positron emission tomography for clinical imaging. Semin Nucl Med 22:150

    Article  PubMed  CAS  Google Scholar 

  7. Lewis DM (1995) Isotope production and the future potential of accelerators. In: Proceedings of the.14th international conference on cyclotrons and their applications, Cape Town

    Google Scholar 

  8. Grey-Morgan T, Hubbard RE (1992) The operation of cyclotrons used for radiopharmaceutical production. In: Proceedings of the 13th international conference on cyclotrons and their applications, Vancouver

    Google Scholar 

  9. IAEA (2006) Directory of cyclotrons used for radionuclide production in member states. IAEA-DCRP, Vienna

    Google Scholar 

  10. Eckelman WC, Coursey BM (eds) (1982) Technetium-99m: generators, chemistry and preparation of radiopharmaceuticals. Int J Appl Radiat Isot 33:793

    Google Scholar 

  11. Marengo M, Apriele C, Bagnara C, Bolzati C, Bonada C, Candini G, Casati R, Civollani S, Colompo FR, Compagnone G, Del Dottore F, DI Gugliemo E, Ferretti PP, Lazzari S, Minoia C, Pancaldi D, Ronchi A, Di Toppi GS, Saponaro R, Torregionai T, Uccelli L, Vecchi F, Piffanelli A (1999) Quality control of Mo99/Tc99m generators: results of a survey of the radiopharmacy working group of the Italian Association of Nuclear Medicine (AIMN). Nucl Med Commun 20:1077–1084

    Article  PubMed  CAS  Google Scholar 

  12. Zolle I (2007) Technetium-99m pharmaceuticals. Springer, Berlin

    Book  Google Scholar 

  13. Holland ME, Deutsch E, Heinemann HR (1986) Studies on commercially available 99Mo/99mTc generators. II. Operating characteristics and behavior of 99M/99mTc radionuclide generators. Appl Radiat Isotopes 37:173

    Article  CAS  Google Scholar 

  14. Sampson C (1995) Textbook of radiopharmacy, theory and practice, 2nd edn. Taylor & Francis, London

    Google Scholar 

  15. Teranishi K, Yamaashi Y, Maruyama Y (2002) 113Sn-113mIn generator with a glass beads column. J Radioanal Nucl Chem 254(2):369–371

    Article  CAS  Google Scholar 

  16. Kleynhans PH, Lötter MG, van Aswegen A, Herbst CP, Marx JD, Minnaar PC (1982) The imaging of myocardial perfusion with 81mKr during coronary arteriography. Eur J Nucl Med 7(9):405–409

    Article  PubMed  CAS  Google Scholar 

  17. Johansson L, Stroak A (2006) Kr-81m calibration factor for the npl ionisation chamber. Appl Radiat Isotopes 64(10–11):1360–1364

    Article  CAS  Google Scholar 

  18. Klein R (2007) Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 52:659–673

    Article  PubMed  CAS  Google Scholar 

  19. Aardaneh K, van der Walt TN, Davids C (2006) Radiochemical separation of 82Sr and the preparation of a sterile 82Sr/82Rb generator column. J Radioanal Nucl Chem 270(2):385–390

    Article  CAS  Google Scholar 

  20. Saha GB, Go RT, MacIntyre WJ et al (1990) Use of the 82Sr/82Rb generator in clinical PET studies. Nucl Med Biol 17:763

    CAS  Google Scholar 

  21. Gennaro GP, Bergner BC, Haney PS, Kramer RH, Loberg MD (1987) Radioanalysis of 82Rb generator eluates. Int J Rad Appl Instrum A 38(3):219–225

    Article  PubMed  CAS  Google Scholar 

  22. Breeman WAP, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine. Eur J Nucl Med Mol Imaging 34(7):978–981

    Article  PubMed  Google Scholar 

  23. Asti M, De Pietri G, Fraternali A, Grassi E, Sghedoni R, Fioroni F, Roesch F, Versari A, Salvo D (2008) Validation of (68)Ge/(68)Ga generator processing by chemical purification for routine clinical application of (68)Ga-DOTATOC. Nucl Med Biol 35(6):721–724

    Article  PubMed  CAS  Google Scholar 

  24. Haynes NG, Lacy JL, Nayak N, Martin CS, Dai D, Mathias CJ, Green MA (2000) Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM. J Nucl Med 41(2):309–314

    PubMed  CAS  Google Scholar 

  25. Guillaume M, Brihaye C (1986) Generators for short-lived gamma and positron emitting radionuclides: current status and prospects. Nucl Med Biol 13:89

    CAS  Google Scholar 

  26. Vasken D, Pasquale P-F, Arrighi JA, Bacharach SL, Quyyumi AA, Freedman NMT, Bonow RO (1993) Coronary blood flow/perfusion and metabolic imaging: concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium: comparison with metabolic activity by positron emission tomography. Circulation 88(3):941–952

    Article  Google Scholar 

  27. Fieno DS, Shea SM, Li Y, Harris KR, Finn JP, Li D (2004) Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2-prepared steady-state free-precession magnetic resonance imaging. Circulation 110(10):1284–1290

    Article  PubMed  Google Scholar 

  28. Yutaka N, Akira F, Taiji T, Yukiya H, Susumu M (2004) Ga-67 citrate scintigraphy in the diagnosis of primary hepatic lymphoma. Clin Nucl Med 29(1):53–54

    Article  Google Scholar 

  29. Capizzi R (2004) Targeted radio-immunotherapy with Bexxar produces durable remissions in patients with late stage low grade Non-Hodgkin’s lymphomas. Trans Am Clin Climatol Assoc 115:255–272

    PubMed  Google Scholar 

  30. Booij J (2001) The clinical benefit of imaging striatal dopamine transporters with [123I] FP-CIT SPET in differentiating patients with presynaptic parkinsonism from other forms of parkinsonism. Eur J Nucl Med 28:266–272

    Article  PubMed  CAS  Google Scholar 

  31. Lorberboym M (2004) 123I-FP-CIT SPECT imaging of dopamine transporters in patients with cerebrovascular disease and clinical diagnosis of vascular parkinsonism. J Nucl Med 45:1688–1693

    PubMed  CAS  Google Scholar 

  32. Lavalaye J (2000) Effect of age and gender on dopamine transporter imaging with 123-I-FP-CIT SPECT in healthy volunteers. Eur J Nucl Med 27:867–869

    Article  PubMed  CAS  Google Scholar 

  33. Thomas P, Mullan B (1995) Avid ln-111 labeled WBC accumulation in a patient with active osteoarthritis of both knees. Clin Nucl Med 20(11):973–975

    Article  PubMed  CAS  Google Scholar 

  34. Ha L, Mansberg R, Nguyen D (2008) Increased activity on In-111 octreotide imaging due to radiation fibrosis. Clin Nucl Med 33:46–48

    Article  PubMed  Google Scholar 

  35. Paul BJ, George SC, Jack JE, Darlene F-B, Freeman W, Conrad N, Howard DJ (1995) Indium-111 oncoscint CR/OV and F-18 FDG in colorectal and ovarian carcinoma recurrences early observations. Clin Nucl Med 20(3):230–236

    Article  Google Scholar 

  36. Bray D, Mills AP, Notghi A (1994) Imaging for recurrent/residual colorectal carcinoma using 111In-oncoscint. Nucl Med Commun 15(4):248

    Article  Google Scholar 

  37. Kimura M, Sivian T, Mouraviev V, Mayes J, Price M, Bannister M, Madden J, Wong T, Polascik T (2009) Utilization of 111In-capromab pendetide SPECT-CT for detecting seminal vesicle invasion with recurrent prostate cancer after primary in situ therapy. Int J Urol 16(12):971–975

    Article  PubMed  Google Scholar 

  38. Dworkin HJ, Premo M, Dees S (2007) Comparison of red cell and whole blood volume as performed using both chromium-51-tagged red cells and iodine-125-tagged albumin and using I-131-tagged albumin and extrapolated red cell volume. Am J Med Sci 334(1):37–40

    Article  PubMed  Google Scholar 

  39. Kaplan E, Fels IG, Kotlowski BR (1960) Therapy of carcinoma of the prostate metastatic to bone with P-32 labeled condensed phosphate. J Nucl Med 1:1–13

    Google Scholar 

  40. Lewington VJ (1993) Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 20:66–74

    Article  PubMed  CAS  Google Scholar 

  41. Blake GM, Wood JF, Wood PJ, Zivanovic MA, Lewington VJ (1989) 89Sr therapy: strontium plasma clearance in disseminated prostatic carcinoma. Eur J Nucl Med 15:49–54

    PubMed  CAS  Google Scholar 

  42. Poner A, Mertens W (1991) Strontium 89 in the treatment of metastatic prostate cancer. Can J Oncol 1:11–18

    Google Scholar 

  43. Ketring AR (1987) 153Sm-EDTMP and 186Re-HEDP as bone therapeutic radiopharmaceuticals. Nucl Med Biol 14:223–232

    CAS  Google Scholar 

  44. de Klerk JMH, van Dijk A, van het Schip AD, Zonnenberg BA, van Rijk PP (1992) Pharmacokinetics of rhenium-186 after administration of rhenium-186-HEDP to patients with bone metastases. J Nucl Med 33:646–651

    PubMed  Google Scholar 

  45. Holmes RA (1992) [153Sm] EDTMP: a potential therapy for bone cancer pain. Semin Nucl Med 22:41–45

    Article  PubMed  CAS  Google Scholar 

  46. Singh A, Holmes RA, Farhangi M (1989) Human pharmacokinetics of samarium-153 EDTMP in metastatic cancer. J Med 30:1814–1818

    CAS  Google Scholar 

  47. Otte A (2006) 90Y-ibritumomab tiuxetan: new drug, interesting concept, and encouraging in practice. Nucl Med Commun 27(7):595–596

    Article  PubMed  Google Scholar 

  48. Han S, Iagaru AH, Zhu HJ, Goris ML (2006) Experience with 90y-ibritumomab (Zevalin) in the management of refractory non-Hodgkin’s lymphoma. Nucl Med Commun 27(12):1022–1023

    Article  Google Scholar 

  49. Gray BN et al (1989) Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol 42:192–196

    Article  PubMed  CAS  Google Scholar 

  50. Biersack HJ, Freeman LM (eds) (2007) Clinical nuclear medicine. Springer, Berlin

    Google Scholar 

  51. Ho S, Lau WY, Leung WT, Chan M, Chan KW, Johnson PJ, Li AK (1997) Arteriovenous shunts in patients with hepatic tumors. J Nucl Med 38:1201–1205

    PubMed  CAS  Google Scholar 

  52. Gray BN et al (2001) Randomized trial of SIR-spheres® plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 12:1711–1720

    Article  PubMed  CAS  Google Scholar 

  53. Chang Y, Jeong J, Lee YS, Kim Y, Lee D, Key Chung J, Lee M (2008) Comparison of potential bone pain palliation agents – Lu-177-EDTMP and Lu-177-DOTMP. J Nucl Med 49(Supplement 1):93

    Google Scholar 

  54. Tedesco J, Goeckeler W, Becker M, Frank K, Gulyas G, Young S (2005) Development of optimal Lu-177 labeled monoclonal antibody (7E11) constructs for radioimmunotherapy of prostate cancer. J Clin Oncol 23(June 1 Supplement):4765

    Google Scholar 

  55. Ezziddin S, Attassi M, Guhlke S, Ezziddin K, Palmedo H, Reichmann K, Ahmadzadehfar H, Biermann K, Krenning E, Biersack HJ (2007) Targeted radiotherapy of neuroendocrine tumors using Lu-177-DOTA octreotate with prolonged intervals. J Nucl Med 48(Suppl 2):394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer B. Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Saleh, T.B. (2010). Radiopharmacy: Basics. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics