Skip to main content

Preclinical Imaging

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

This chapter provides the reader with an introductory look into the significance of preclinical imaging relative to human medicine. The concept of translating preclinical research to the clinical realm is presented with a focus on the primary human disease model, the mouse. Here, the term Small Animal Imaging (SAI) is used to describe preclinical imaging of mice. The fundamental operating principles of the various SAI technologies and primary differences with their clinical counterparts are described. First generation and state-of-the-art instruments are reviewed as well as the utility of combining these technologies into multimodality instruments. Considerations in small animal use, such as anesthesia and radiation dose are followed by a brief look at SAI center design. The application of SAI in the areas of cardiology, neurology, and oncology are reviewed and finally, a perspective on the future of SAI is given. This is not meant to be a comprehensive review, but rather a primer for the biomedical student or researcher to become familiarized with the overall field of preclinical imaging. For further information the reader is referred to external sources of literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49:1–4

    PubMed  Google Scholar 

  2. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    PubMed  CAS  Google Scholar 

  3. Marincola F (2003) Translational medicine: a two-way road. J Transl Med 1:1

    PubMed  Google Scholar 

  4. Sartor RB (2003) Translational research: bridging the widening gap between basic and clinical research. Gastroenterology 124:1178

    PubMed  Google Scholar 

  5. Humes HD (2005) Translational medicine and the National Institutes of Health road map: steep grades and tortuous curves. J Lab Clin Med 146:51–54

    PubMed  Google Scholar 

  6. Sonntag K-C (2005) Implementations of translational medicine. J Transl Med 3:33

    PubMed  Google Scholar 

  7. O’Connell D, Roblin D (2006) Translational research in the pharmaceutical industry: from bench to bedside. Drug Discov Today 11:833–837

    Google Scholar 

  8. Littman BH, Di mario L, Plebani M, Marincola FM (2007) What’s next in translational medicine? Clin Sci 112:217–227

    Google Scholar 

  9. Zerhouni EA (2005) Translational and clinical science – time for a new vision. N Engl J Med 353:1621–1623

    PubMed  CAS  Google Scholar 

  10. Malakoff D (2000) SUPPLIERS: the rise of the mouse. Biomedicine’s model mammal. Science 288:248–253

    PubMed  CAS  Google Scholar 

  11. Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. Inst Lab Animal Res J 42:219–232

    CAS  Google Scholar 

  12. Hanahan D (1989) Transgenic mice as probes into complex systems. Science 246:1265–1275

    PubMed  CAS  Google Scholar 

  13. Misra R, Duncan S (2002) Gene targeting in the mouse. Endocr 19:229–238

    CAS  Google Scholar 

  14. Ryan MJ, Sigmund CD (2002) Use of transgenic and knockout strategies in mice. Semin Nephrol 22:154–160

    PubMed  CAS  Google Scholar 

  15. Nolan PM et al (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    PubMed  CAS  Google Scholar 

  16. Vogel G (2007) Nobel prizes: a knockout award in medicine. Science 318:178–179

    PubMed  CAS  Google Scholar 

  17. Grimm D (2006) Mouse genetics: a mouse for every gene. Science 312:1862–1866

    PubMed  CAS  Google Scholar 

  18. Cherry SR (2004) In vivo molecular and genomic imaging: new challenges for imaging physics. Phy Med Biol 49:R13

    CAS  Google Scholar 

  19. Cherry SR (2006) Multimodality in vivo imaging systems: twice the power or double the trouble? Ann Rev Biomed Eng 8:35–62

    CAS  Google Scholar 

  20. Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK (2000) High resolution x-ray computed tomograpahy: an emerging tool for small animal cancer research. Neoplasia 2:62–70

    PubMed  CAS  Google Scholar 

  21. Ritman EL (2004) Micro-computed,tomography – current status and developments. Annu Rev Biomed Eng 6:185–208

    PubMed  CAS  Google Scholar 

  22. Matscheko G, Carlsson GA (1989) Measurement of absolute energy spectra from a clinical CT machine under working conditions using a compton spectrometer. Phys Med Biol 34:209–222

    PubMed  CAS  Google Scholar 

  23. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM (2002) The Essential physics of medical imaging, 2nd edn. Williams & Wilkins, Lippincott

    Google Scholar 

  24. Brooks RA, Chiro GD (1976) Beam hardening in X-ray reconstructive tomography. Phy Med Biol 21:390

    CAS  Google Scholar 

  25. Hsieh J, Molthen RC, Dawson CA, Johnson RH (2000) An iterative approach to the beam hardening correction in cone beam CT. Med Phys 27:23–29

    PubMed  CAS  Google Scholar 

  26. Chow PL, Rannou FR, Chatziioannou AF (2004) Towards a beam hardening correction for a microCT scanner. Mol Imaging Biol 6:77–78

    Google Scholar 

  27. Yan CH, Whalen RT, Beaupre GS, Yen SY, Napel S (2000) Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction. IEEE Trans Med Imaging 19:1–11

    PubMed  CAS  Google Scholar 

  28. Zhao W, Rowlands JA (1995) X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. Med Phys 22:1595–1604

    PubMed  CAS  Google Scholar 

  29. Zhao W et al (1997) Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of a prototype real-time detector. Med Phys 24:1834–1843

    PubMed  CAS  Google Scholar 

  30. Nagarkar VV et al (1998) Structured CsI(Tl) scintillators for X-ray imaging applications. IEEE Trans Nucl Sci 45:492–496

    CAS  Google Scholar 

  31. Shepherd JA, Gruner SM, Tate MW, Tecotzky M (1994) In: X-ray and ultraviolet sensors and applications. Hoover RB, Williams MB (eds) 24–30 (SPIE) http://spie.org/x648.html?product_id=211910

  32. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49:5S–23S

    PubMed  Google Scholar 

  33. Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325

    PubMed  Google Scholar 

  34. Driehuys B et al (2008) Small animal imaging with magnetic resonance microscopy. ILAR J 49:35–53

    PubMed  CAS  Google Scholar 

  35. Benveniste H, Blackband S (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420

    PubMed  Google Scholar 

  36. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162

    PubMed  CAS  Google Scholar 

  37. McConville P, Moody JB, Moffat BA (2005) High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr Opin Chem Biol 9:413–420

    PubMed  CAS  Google Scholar 

  38. Coatney RW (2001) Ultrasound imaging: principles and applications in rodent research. ILAR J 42:233–247

    PubMed  CAS  Google Scholar 

  39. Foster SF, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27

    PubMed  CAS  Google Scholar 

  40. Wirtzfeld LA et al (2005) A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 65:6337–6345

    PubMed  CAS  Google Scholar 

  41. Krix M et al (2003) Comparison of intermittent-bolus contrast imaging with conventional power Doppler sonography: quantification of tumour perfusion in small animals. Ultrasound Med Biol 29:1093–1103

    PubMed  Google Scholar 

  42. Ferrara K, DeAngelis G (1997) Color flow mapping. Ultrasound Med Biol 23:321–345

    PubMed  CAS  Google Scholar 

  43. Liang H-D, Blomley MJK (2003) The role of ultrasound in molecular imaging. Br J Radiol 76:S140–S150

    PubMed  CAS  Google Scholar 

  44. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    PubMed  CAS  Google Scholar 

  45. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 97:2767–2772

    PubMed  CAS  Google Scholar 

  46. Intes X et al (2003) In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med Phys 30:1039–1047

    PubMed  Google Scholar 

  47. Obrig H, Villringer A (2003) Beyond the visible-imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18

    PubMed  Google Scholar 

  48. Li A et al (2003) Tomographic optical breast imaging guided by three-dimensional mammography. Appl Opt 42:5181–5190

    PubMed  Google Scholar 

  49. Zhang Q et al (2005) Coregistered tomographic x-ray and optical breast imaging: initial results. J Biomed Opt 10:024033

    PubMed  Google Scholar 

  50. Paroo Z et al (2004) Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 3:117–124

    PubMed  Google Scholar 

  51. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    PubMed  CAS  Google Scholar 

  52. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    PubMed  CAS  Google Scholar 

  53. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. 9:123–128

    Google Scholar 

  54. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    PubMed  CAS  Google Scholar 

  55. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312

    PubMed  CAS  Google Scholar 

  56. Ntziachristos V, Leroy-Willig A, Tavitian B (2007) Textbook of in vivo imaging in vertebrates. Wiley, New York

    Google Scholar 

  57. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440

    PubMed  CAS  Google Scholar 

  58. Pham TH et al (2000) Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl Opt 39:6487–6497

    PubMed  CAS  Google Scholar 

  59. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. 452:580–589

    Google Scholar 

  60. Park JM, Gambhir SS (2005) Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging. Proc IEEE 93:771–783

    CAS  Google Scholar 

  61. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–23

    PubMed  CAS  Google Scholar 

  62. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382

    PubMed  CAS  Google Scholar 

  63. Greer LF III, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    PubMed  CAS  Google Scholar 

  64. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Meth 4:641–643

    CAS  Google Scholar 

  65. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  66. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243

    PubMed  Google Scholar 

  67. Bluestone AY, Stewart M, Lasker J, Abdoulaev GS, Hielscher AH (2004) Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia. J Biomed Opt 9:1046–1062

    PubMed  CAS  Google Scholar 

  68. Hielscher AH (2005) Optical tomographic imaging of small animals. Curr Opin Biotechnol 16:79–88

    PubMed  CAS  Google Scholar 

  69. Zacharakis G, Ripoll J, Weissleder R, Ntziachristos V (2005) Fluorescent protein tomography scanner for small animal imaging. IEEE Trans Medl Imaging 24:878–885

    Google Scholar 

  70. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50:4225–4241

    PubMed  Google Scholar 

  71. Chaudhari AJ et al (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441

    PubMed  Google Scholar 

  72. Alexandrakis G, Rannou FR, Chatziioannou AF (2006) Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Phys Med Biol 51(8):2045–2053

    PubMed  Google Scholar 

  73. Wang G, Shen H, Durairaj K, Qian X, Cong W (2006) The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data. Int J Biomed Imaging 1–8, www.ncbi.nlm.nih.gov/pmc/articles/PMC2324039/pdf/IJBI2006-58601.pdf

  74. Lv Y et al (2007) Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Phys Med Biol 52:4497–4513

    PubMed  Google Scholar 

  75. Welch MJ, Redvanly CS (2001) Handbook of radiopharmaceuticals. Wiley, New York

    Google Scholar 

  76. Ullberg S, Larsson B (1981) Whole-body autoradiography. Meth Enzymol 77:64–80

    PubMed  CAS  Google Scholar 

  77. Hall MD, Davenport AP, Clark CR (1986) Quantitative receptor autoradiography. Nature 324:493–494

    Google Scholar 

  78. Schmidt KC, Smith CB (2005) Resolution, sensitivity and precision with autoradiography and small animal positron emission tomography: implications for functional brain imaging in animal research. Nucl Med Biol 32:719–725

    PubMed  CAS  Google Scholar 

  79. Kuhar MJ, Lloyd DG, Appel N, Loats HL (1991) Imaging receptors by autoradiography: computer-assisted approaches. J Chem Neuroanat 4:319–327

    PubMed  CAS  Google Scholar 

  80. Zhao W, Ginsberg MD, Smith DW (1995) Three-dimensional quantitative autoradiography by disparity analysis: theory and applications to image averaging of local cerebral glucose utilization. J Cereb Blood Flow Metab 15:552–565

    PubMed  CAS  Google Scholar 

  81. Toyama H et al (2004) Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J Nucl Med 45:1398–1405

    PubMed  CAS  Google Scholar 

  82. Phelps ME, Mazziotta JC, Schelbert HR (1986) Positron emission tomography and autoradiography – principles and applications for the brain and heart. Raven, New York

    Google Scholar 

  83. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45

    PubMed  CAS  Google Scholar 

  84. Wagenaar DJ et al (2006) In vivo dual-isotope SPECT imaging with improved energy resolution. IEEE Nuclear Science Symposium Conference Record 6, 3821–3826

    Google Scholar 

  85. Phelps ME (2004) PET: molecular imaging and its biological applications. Springer, Berlin

    Google Scholar 

  86. Strand S-E et al (1994) Small animal imaging with pinhole single-photon emission computed tomography. Cancer 73:981–984

    PubMed  CAS  Google Scholar 

  87. Weber DA et al (1994) Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 35:342–348

    PubMed  CAS  Google Scholar 

  88. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE (1994) Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 39(3):425

    PubMed  CAS  Google Scholar 

  89. Beekman F, van der Have F (2007) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161

    PubMed  Google Scholar 

  90. Kupinski MA, Barrett HH (2005) Small-animal SPECT imaging. Springer, New York

    Google Scholar 

  91. Meikle SR et al (2001) An investigation of coded aperture imaging for small animal SPECT. IEEE Trans Nucl Sci 48:816–821

    Google Scholar 

  92. Meikle SR et al (2002) A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 49:2167–2171

    Google Scholar 

  93. Schramm NU et al (2003) High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50:315–320

    Google Scholar 

  94. Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673

    PubMed  Google Scholar 

  95. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–224

    PubMed  CAS  Google Scholar 

  96. Phelps ME (1999) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233

    Google Scholar 

  97. Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  98. Hutchins GD, Miller MA, Soon VC, Receveur T (2008) Small animal PET imaging. ILAR J 49:54–65

    PubMed  CAS  Google Scholar 

  99. Myers R (2001) The biological application of small animal PET imaging. Nucl Med Biol 28:585–593

    PubMed  CAS  Google Scholar 

  100. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781

    PubMed  CAS  Google Scholar 

  101. Chatziioannou AF (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med 29:98–114

    Google Scholar 

  102. Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) – advances in PET imaging technology. J Nucl Med 47:1735–1745

    PubMed  CAS  Google Scholar 

  103. Gambhir SS et al (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96:2333–2338

    PubMed  CAS  Google Scholar 

  104. Herschman HR et al (2000) Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 59:699–705

    PubMed  CAS  Google Scholar 

  105. Gambhir SS, Barrio JR, Herschman HR, Phelps ME (1999) Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26:481–490

    PubMed  CAS  Google Scholar 

  106. Gambhir SS et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138

    PubMed  CAS  Google Scholar 

  107. Hu S-Z et al (1996) Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061

    Google Scholar 

  108. Wu AM et al (2000) High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci USA 97:8495–8500

    PubMed  CAS  Google Scholar 

  109. Boone J, Alexander G, Seibert J (1993) A fluoroscopy-based computed tomography scanner for small specimen research. Investig Radiol 28:539–544

    CAS  Google Scholar 

  110. Holdsworth DW, Drangova M, Schulenburg KS, Fenster A (1990) A table-top CT system for high-resolution volume imaging. Proc Soc Photo Instrum Eng 1231:239–245

    Google Scholar 

  111. Paulus MJ et al (1999) A new X-ray computed tomography system for laboratory mouse imaging. IEEE Trans Nucl Sci 46:558–564

    Google Scholar 

  112. Seguin FH, Burstein P, Bjorkholm PJ, Homburger F, Adams RA (1985) X-ray computed tomography with 50-μm resolution. Appl Opt 24:4117–4123

    PubMed  CAS  Google Scholar 

  113. Eccles CD, Callaghan PT (1986) High resolution imaging – the NMR microscope. J Magn Reson 68:393–398

    CAS  Google Scholar 

  114. Johnson GA, Thompson MB, Gewalt SL, Hayes CE (1986) Nuclear magnetic resonance imaging at microscopic resolution. J Magn Reson 68

    Google Scholar 

  115. Johnson GA, Benveniste H, Engelhardt RT, Qiu H, Hedlund LW (1997) Magnetic resonance microscopy in basic studies of brain structure and function. Ann NY Acad Sci 820:139–148

    PubMed  CAS  Google Scholar 

  116. Zhang J et al (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20:1639–1648

    PubMed  Google Scholar 

  117. Tenney JR, Duong TQ, King JA, Ferris CF (2004) fMRI of brain activation in a genetic rat model of absence seizures. Epilepsia 45:576–582

    PubMed  Google Scholar 

  118. Benveniste H, Kim K, Zhang L, Johnson GA (2000) Magnetic resonance microscopy of the C57BL mouse brain. Neuroimage 11:601–611

    PubMed  CAS  Google Scholar 

  119. Maronpot RR, Sills RC, Johnson GA (2004) Applications of magnetic resonancy microscopy. Toxicol Pathol 32

    Google Scholar 

  120. Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL (1995) Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci USA 92:2239–2243

    PubMed  CAS  Google Scholar 

  121. Aristizábal O, Christopher DA, Foster FS, Turnbull DH (1998) 40-MHz echocardiography scanner for cardiovascular assessment of mouse embryos. Ultrasound Med Biol 24:1407–1417

    PubMed  Google Scholar 

  122. Christopher DA, Burns PN, Foster FS (1996) High frequency continuous wave Doppler ultrasound system for the detection of blood Flow in the microcirculation. Ultrasound Med Biol 22:1196–1203

    Google Scholar 

  123. Christopher DA, Starkoski BG, Burns PN, Foster FS (1997) High frequency pulsed doppler ultrasound system for detecting and mapping blood flow in the microcirculation. Ultrasound Med Biol 23:997–1015

    PubMed  CAS  Google Scholar 

  124. Kruse DE, Silverman RH, Fornaris RJ, Coleman DJ, Ferrara KW (1998) A swept-scanning mode for estimation of blood velocity in the microvasculature. IEEE Trans Ultrason Ferroelectr Freq Control 45:1437–1440

    PubMed  CAS  Google Scholar 

  125. Foster FS et al (2002) A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28:1165–1172

    PubMed  CAS  Google Scholar 

  126. Caliper Life Sciences: IVIS Optical imaging systems. http://www.caliperls.com/.

  127. Cambridge research instruments: maestro optical imaging system. http://www.cri-inc.com/.

  128. Kodak: in-vivo image station. http://www.carestreamhealth.com/in-vivo-multispectral-system-fx.html.

  129. Vastenhouw B, Beekman F (2007) Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 48:487–493

    PubMed  Google Scholar 

  130. Beekman FJ et al (2005) U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194–1200

    PubMed  Google Scholar 

  131. Beekman FJ, Vastenhouw B (2004) Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49:4579

    PubMed  Google Scholar 

  132. Acton PD, Choi S-R, Plossl K, Kung HF (2002) Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 29:691–698

    PubMed  CAS  Google Scholar 

  133. Kim H et al (2006) SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 33:465–474

    PubMed  CAS  Google Scholar 

  134. Lackas C et al (2005) T-SPECT: a novel imaging technique for small animal research. IEEE Trans Nucl Sci 52:181–187

    Google Scholar 

  135. Forrer F et al (2006) In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging 33:1214–1217

    PubMed  CAS  Google Scholar 

  136. MacDonald LR et al (2001) Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48:830–836

    Google Scholar 

  137. Bloomfield PM et al (1995) The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol 40:1105

    PubMed  CAS  Google Scholar 

  138. Lecomte R, Cadorette J, Richard P, Rodrigue S, Rouleau D (1994) Design and engineering aspects of a high resolution positron emission tomography for small animal imaging. IEEE Trans Nucl Sci 41:1446–1452

    Google Scholar 

  139. Cherry SR et al (1997) MicroPET: a high resolution pet scanner for imaging small animals. IEEE Trans Nucl Sci 44:1161–1166

    CAS  Google Scholar 

  140. Del Guerra A, Di Domenico G, Scandola M, Zavattini G (1998) YAP-PET: first results of a small animal positron emission tomograph based on YAP:Ce finger crystals. IEEE Trans Nucl Sci 45:3105–3108

    Google Scholar 

  141. Jeavons AP, Chandler RA, Dettmar CAR (1999) A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 46:468–473

    Google Scholar 

  142. Weber S et al (1999) Evaluation of TierPET system. IEEE Trans Nucl Sci 46:1177–1183

    Google Scholar 

  143. Siemens Preclinical Solutions: Inveon

    Google Scholar 

  144. Gleason SS et al (2006) A new highly versatile multimodality small animal imaging platform. IEEE Nucl Sci Symp Conf Rec 4:2447–2449

    Google Scholar 

  145. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900

    PubMed  Google Scholar 

  146. GE Healthcare: eXplore Vista PET/CT

    Google Scholar 

  147. Huisman M, Reder S, Weber A, Ziegler S, Schwaiger M (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34:532–540

    PubMed  Google Scholar 

  148. Philips Medical Systems: Mosaic HP. http://www.medical.philips.com/main/products/preclinical/products/mosaic_hp/

  149. Gamma Medica-Ideas: LabPET. http://www.gm-ideas.com/index.php?option=com_content&task = view&id = 107&Itemid = 36

  150. Bergeron M et al (2007) Performance evaluation of the LabPET APD-based digital PET scanner. Nucl Sci Symp Conf Rec 2007(6):4185–4191

    Google Scholar 

  151. Larobina M, Brunetti A, Salvatore M (2006) Small animal PET: a review of commercially available imaging systems. Curr Med Imaging Rev 2:187–192

    Google Scholar 

  152. Levin CS, Zaidi H (2007) Current trends in preclinical PET system design. PET Clinic 2:125–160

    Google Scholar 

  153. Shokouhi S et al (2005) System performance simulations of the RatCAP awake rat brain scanner. IEEE Trans Nucl Sci 52:1305–1310

    Google Scholar 

  154. Woody C et al (2004) RatCAP: a small, head-mounted PET tomograph for imaging the brain of an awake RAT. Nucl Inst Methods Phys Res A 527:166–170

    CAS  Google Scholar 

  155. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    PubMed  Google Scholar 

  156. Hasegawa BH et al (2002) In Medical imaging 2002: physiology and function from multidimensional images. 1–15 (SPIE) http://spie.org/x648.html?product_id=463620

  157. Goertzen AL, Meadors AK, Silverman RW, Cherry SR (2002) Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 47(24):4315

    PubMed  Google Scholar 

  158. Iwata K, Wu MC, Hasegawa BH (2000) Design of combined X-ray CT and SPECT system for small animals. IEEE Nucl Sci Symp Conf Rec 3:1608–1612

    Google Scholar 

  159. Weisenberger AG et al (2003) SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50:74–79

    Google Scholar 

  160. Zingerman Y, Golan H, Gersten A, Moalem AA (2008) Compact CT/SPECT system for small-object imaging. Nucl Inst Methods Phy Res A 548:135–148

    Google Scholar 

  161. Kastis GA et al (2004) Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51:63–67

    Google Scholar 

  162. Fontaine R et al (2005) Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging. IEEE Trans Nucl Sci 52:691–696

    Google Scholar 

  163. Seidel J et al (2002) Features of the NIH ATLAS small animal PET scanner and its use with a coaxial small animal volume CT scanner. IEEE Proc Biomed Eng Symp 4:545–548

    Google Scholar 

  164. Khodaverdi M, Pauly F, Weber S, Schroder G, Ziemons K, Sievering R, Halling H (2001) Preliminary studies of a micro-CT for a combined small animal PET/CT scanner, Conference Record of the 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA, USA, 3:1605–1606

    Google Scholar 

  165. Liang H et al (2007) A microPET/CT system for in vivo small animal imaging. Phys Med Biol 52:3881

    PubMed  CAS  Google Scholar 

  166. Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF (2006) A method of image registration for small animal, multi-modality imaging. Phys Med Biol 51:379

    PubMed  Google Scholar 

  167. Deroose CM et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48:295–303

    PubMed  CAS  Google Scholar 

  168. Siemens Preclinical Solutions: Inveon. http://www.medical.siemens.com/siemens/en_US/gg_nm_FBAs/files/brochures/preclinical/Inveon.pdf

  169. Raylman RR, Hammer BE, Christensen NL (1996) Combined MRI-PET scanner: a Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field. IEEE Trans Nucl Sci 43:2406–2412

    CAS  Google Scholar 

  170. Wirrwar A et al (1997) 4.5 tesla magnetic field reduces range of high-energy positrons – potential implications for positron emission tomography. IEEE Trans Nucl Sci 44:184–189

    CAS  Google Scholar 

  171. Hammer BE, Christensen NL, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920

    PubMed  CAS  Google Scholar 

  172. Shao Y et al (1997) Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44:1167–1171

    CAS  Google Scholar 

  173. Shao Y et al (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965

    PubMed  CAS  Google Scholar 

  174. Slates RB et al (1990) A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol 44:2015

    Google Scholar 

  175. Lecomte R et al (1996) Initial results from the sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957

    Google Scholar 

  176. Levin CS, Foudray AMK, Olcott PD, Habte F (2003) Investigation of position sensitive avalanche photodiodes for a new high resolution PET detector design. Nucl Sci Symp Conf Rec 4:2262–2266

    Google Scholar 

  177. Marsden PK, Strul D, Keevil SF, Williams SCR, Cash D (2002) Simultaneous PET and NMR. Br J Radiol 75:S53–S59

    PubMed  Google Scholar 

  178. Pichler BJ et al (2006) Performance Test of an LSO-APD Detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647

    PubMed  Google Scholar 

  179. Raylman RR et al (2006) Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 51:6371

    PubMed  Google Scholar 

  180. Catana C et al (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976

    PubMed  Google Scholar 

  181. Jacobs A et al (1999) Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1:154–161

    PubMed  CAS  Google Scholar 

  182. Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63:1160–1165

    PubMed  CAS  Google Scholar 

  183. Ray P, De A, Min J-J, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    PubMed  CAS  Google Scholar 

  184. Li C et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33:349–358

    PubMed  CAS  Google Scholar 

  185. Zhang Z, Liang K, Bloch S, Berezin M, Achilefu S (2005) Monomolecular multimodal fluorescence-radioisotope imaging agents. Bioconjug Chem 16:1232–1239

    PubMed  CAS  Google Scholar 

  186. Culver J, Akers W, Achilefu S (2008) Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 49:169–172

    PubMed  Google Scholar 

  187. Peter J, Unholtz D, Schulz RB, Doll J, Semmler W (2007) Development and initial results of a tomographic dual-modality positron/optical small animal imager. IEEE Trans Nucl Sci 54:1553–1560

    Google Scholar 

  188. Celentano L et al (2003) Preliminary tests of a prototype system for optical and radionuclide imaging in small animals. IEEE Trans Nucl Sci 50:1693–1701

    Google Scholar 

  189. Prout DL, Silverman RW, Chatziioannou AF (2004) Detector concept for OPET – a combined PET and optical imaging system. IEEE Trans Nucl Sci 51:752–756

    PubMed  Google Scholar 

  190. Prout DL, Silverman RW, Chatziioannou AF (2005) Readout of the optical PET (OPET) detector. IEEE Trans Nucl Sci 52:28–32

    PubMed  Google Scholar 

  191. Douraghy A, Rannou FR, Silverman RW, Chatziioannou AF (2008) FPGA electronics for OPET: a dual-modality optical and positron emission tomograph. IEEE Trans Nucl Sci 55:2541–2545

    Google Scholar 

  192. Kim S-J et al (2006) Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med 12:1423–1428

    PubMed  CAS  Google Scholar 

  193. Fox JG, Cohen BJ, Loew FM (1984) Laboratory animal medicine. Academic, Orlando

    Google Scholar 

  194. Hendrich H (2004) The laboratory mouse. Academic, Amsterdam

    Google Scholar 

  195. Suckow MA, Danneman P, Brayton C (2001) The laboratory mouse. CRC Press, Boca Raton

    Google Scholar 

  196. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy, Washington

    Google Scholar 

  197. Flecknell PA (1993) Anaesthesia of animals for biomedical research. Br J Anaesth 71:885–894

    PubMed  CAS  Google Scholar 

  198. Szczesny G, Veihelmann A, Massberg S, Nolte D, Messmer K (2004) Long-term anaesthesia using inhalatory isoflurane in different strains of mice–the haemodynamic effects. Lab Anim 38:64–69

    PubMed  CAS  Google Scholar 

  199. Hildebrandt I, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26

    PubMed  CAS  Google Scholar 

  200. Stout D et al (2005) Small animal imaging center design: the facility at the UCLA crump institute for molecular imaging. Mol Imaging Biol 7:393–402

    PubMed  Google Scholar 

  201. Fueger BJ et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    PubMed  CAS  Google Scholar 

  202. Suckow C et al (2008) Multimodality rodent imaging chambers for use under barrier conditions with gas anesthesia. Mol Imaging Biol 11(2):100–106

    Google Scholar 

  203. Wernick MN, Aarsvold JN (2004) Emission tomography: the fundamentals of PET and SPECT. Elsevier Academic, San Diego

    Google Scholar 

  204. Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158

    PubMed  Google Scholar 

  205. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6:149–159

    PubMed  Google Scholar 

  206. Taschereau R, Chow PL, Chatziioannou AF (2006) Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33:216–224

    PubMed  Google Scholar 

  207. Funk T, Sun M, Hasegawa BH (2004) Radiation dose estimate in small animal SPECT and PET. Med Phys 31:2680–2686

    PubMed  CAS  Google Scholar 

  208. Taschereau R, Chatziioannou AF (2007) Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Med Phys 34:1026–1036

    PubMed  CAS  Google Scholar 

  209. Klaunberg BA, Davis JA (2008) Considerations for laboratory animal imaging center design and setup. ILAR J 49:4–16

    PubMed  CAS  Google Scholar 

  210. Johnson K (2008) Introduction to rodent cardiac imaging. ILAR J 49:27–34

    PubMed  CAS  Google Scholar 

  211. Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J Jr (2002) Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol 282:H2134–H2140

    PubMed  CAS  Google Scholar 

  212. Strotmann J, Wiesmann F, Frantz S (2004) Cardiac imaging in a small animal model. Vis J 6:46–49

    Google Scholar 

  213. Jouannot E et al (2006) High-frequency ultrasound detection and follow-up of Wilms’ tumor in the mouse. Ultrasound Med Biol 32:183–190

    PubMed  Google Scholar 

  214. Badea CT, Fubara B, Hedlund LW, Johnson GA (2005) 4-D Micro-CT of the mouse heart. Mol Imaging 4:110–116

    PubMed  Google Scholar 

  215. Drangova M, Ford NL, Detobe SA, Wheatley AW, Holdsworth DW (2007) Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice. Investig Radiol 42:85–94

    Google Scholar 

  216. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31:3324–3329

    PubMed  CAS  Google Scholar 

  217. Cassidy PJ et al (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237

    PubMed  Google Scholar 

  218. Yang Y, Rendig S, Siegel S, Newport DF, Cherry SR (2005) Cardiac PET imaging in mice with simultaneous cardiac and respiratory gating. Phys Med Biol 50:2979–2989

    PubMed  Google Scholar 

  219. Weiss RG (2001) Imaging the murine cardiovascular system with magnetic resonance. Circ Res 88:550–551

    PubMed  CAS  Google Scholar 

  220. Nahrendorf M et al (2003) Cardiac magnetic resonance imaging in small animal models of human heart failure. Med Image Anal 7:369–375

    PubMed  CAS  Google Scholar 

  221. Hockings PD et al (2002) Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 106:1716–1721

    PubMed  CAS  Google Scholar 

  222. Fayad ZA et al (1998) Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98:1541–1547

    PubMed  CAS  Google Scholar 

  223. Wu MC et al (2003) Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 42:576–582

    PubMed  Google Scholar 

  224. Wu JC et al (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    PubMed  Google Scholar 

  225. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS (2002) Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106:180–183

    PubMed  Google Scholar 

  226. Chang GY, Xie X, Wu JC (2006) Overview of stem cells and imaging modalities for cardiovascular diseases. J Nucl Cardiol, Abstracts of Original Contributions 11th Annual Scientific Session 13:554–569

    Google Scholar 

  227. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    PubMed  CAS  Google Scholar 

  228. Dobrucki LW, Sinusas AJ (2005) Cardiovascular molecular imaging. Semin Nucl Med 35:73–81

    PubMed  Google Scholar 

  229. Sinusas AJ (2004) Imaging of angiogenesis. J Nucl Cardiol 11:617–633

    PubMed  Google Scholar 

  230. Haubner R et al (1999) Radiolabeled alpha-v-beta-3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071

    PubMed  CAS  Google Scholar 

  231. Haubner R et al (2001) Noninvasive imaging of alpha-v-beta-3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  232. Tempel-Brami C, Neeman M (2002) Non-invasive analysis of rat ovarian angiogenesis by MRI. Mol Cell Endocrinol 187:19–22

    PubMed  CAS  Google Scholar 

  233. Verhoye M et al (2002) Assessment of the neovascular permeability in glioma xenografts by dynamic T1 MRI with Gadomer-17. Magn Reson Med 47:305–313

    PubMed  Google Scholar 

  234. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002) High-frequency doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371–6375

    PubMed  CAS  Google Scholar 

  235. Jorgensen SM, Demirkaya O, Ritman EL (1998) Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol Heart Circ Physiol 275:H1103–H1114

    CAS  Google Scholar 

  236. Blankenberg FG et al (1999) Imaging of apoptosis (programmed cell death) with 99mtc annexin V. J Nucl Med 40:184–191

    PubMed  CAS  Google Scholar 

  237. Franklin KBJ, Paxinos G (2008) The Mouse Brain in Stereotaxic Coordinates, 3rd edn. Academic, San Diego

    Google Scholar 

  238. Mouse Brain Library. http://www.mbl.org/

  239. Ahrens ET, Narasimhan PT, Nakada T, Jacobs RE (2002) Small animal neuroimaging using magnetic resonance microscopy. Prog Nucl Magn Reson Spectrosc 40:275–306

    CAS  Google Scholar 

  240. Johansson BB (2000) Brain plasticity and stroke rehabilitation: the Willis lecture. Stroke 31:223–230

    PubMed  CAS  Google Scholar 

  241. Dijkhuizen RM et al (2001) Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci USA 98:12766–12771

    PubMed  CAS  Google Scholar 

  242. Silva AC, Bock NA (2008) Manganese-enhanced MRI: an exceptional tool in translational neuroimaging. Schizophr Bull 34:595–604

    PubMed  Google Scholar 

  243. Bilgen M, Dancause N, Al-Hafez B, He Y-Y, Malone TM (2005) Manganese-enhanced MRI of rat spinal cord injury. Magn Reson Imaging 23:829–832

    PubMed  CAS  Google Scholar 

  244. Acton P et al (2002) Occupancy of dopamine D2 receptors in the mouse brain measured using ultra-high-resolution single-photon emission tomography and [123]IBF. Eur J Nucl Med 29:1507–1515

    CAS  Google Scholar 

  245. Hume SP et al (1997) In vivo saturation kinetics of two dopamine transporter probes measured using a small animal positron emission tomography scanner. J Neurosci Meth 76:45–51

    CAS  Google Scholar 

  246. Jongen C, de Bruin K, Beekman F, Booij J (2008) SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice. Eur J Nucl Med Mol Imaging 35:1692–1698

    PubMed  CAS  Google Scholar 

  247. Brownell A-L, Livni E, Galpern W, Isacson O (1998) In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann Neurol 43:387–390

    PubMed  CAS  Google Scholar 

  248. Torres EM et al (1995) Assessment of striatal graft viability in the rat in vivo using a small diameter PET scanner. NeuroReport 6:2017–2021

    PubMed  CAS  Google Scholar 

  249. Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer 38:2173–2188

    PubMed  Google Scholar 

  250. Shields AF et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    PubMed  CAS  Google Scholar 

  251. Herschman HR (2003) Micro-PET imaging and small animal models of disease. Curr Opin Immunol 15:378–384

    PubMed  CAS  Google Scholar 

  252. Czernin J, Weber WA, Herschman HR (2006) Molecular imaging in the development of cancer therapeutics. Annu Rev Med 57:99–118

    PubMed  CAS  Google Scholar 

  253. Radu CG et al (2008) Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2[prime]-deoxycytidine analog. Nat Med 14:783–788

    PubMed  CAS  Google Scholar 

  254. Lapointe D et al (1999) High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice. J Nucl Med 40:876–882

    PubMed  CAS  Google Scholar 

  255. Sundaresan G et al (2003) 124I-Labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44:1962–1969

    PubMed  CAS  Google Scholar 

  256. Koutcher JA et al (2002) MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 4:480–485

    PubMed  Google Scholar 

  257. Pulkkanen K et al (2000) Characterization of a new animal model for human renal cell carcinoma. In Vivo 14:393–400

    PubMed  CAS  Google Scholar 

  258. Abdulkadir SA et al (2001) Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7:101–107

    PubMed  CAS  Google Scholar 

  259. Ross BD et al (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Molecular Cancer Therapy 2:581–587

    CAS  Google Scholar 

  260. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    PubMed  CAS  Google Scholar 

  261. Gross DJ et al (1999) The antiangiogenic agent linomide inhibits the growth rate of von hippel-lindau paraganglioma xenografts to mice. Clin Cancer Res 5:3669–3675

    PubMed  CAS  Google Scholar 

  262. Badruddoja MA et al (2003) Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro-Oncol 5:235–243

    PubMed  CAS  Google Scholar 

  263. Tiefenauer LX, Tschirky A, Kuhne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402

    PubMed  CAS  Google Scholar 

  264. Cha S et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855

    PubMed  Google Scholar 

  265. Sun Y et al (2004) Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 51:893–899

    PubMed  Google Scholar 

  266. Cody DD et al (2005) Murine lung tumor measurement using respiratory-gated micro-computed tomography. Investig Radiol 40:263–269

    Google Scholar 

  267. De Clerck NM et al (2004) High-resolution X-ray microtomography for the detection of lung tumors in living mice. Neoplasia 6:374–379

    PubMed  Google Scholar 

  268. Edinger M et al (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310

    PubMed  CAS  Google Scholar 

  269. Rehemtulla A et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    PubMed  CAS  Google Scholar 

  270. Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    PubMed  CAS  Google Scholar 

  271. Weissleder R, Tung C-H, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    PubMed  CAS  Google Scholar 

  272. Becker A et al (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19:327–331

    PubMed  CAS  Google Scholar 

  273. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    PubMed  CAS  Google Scholar 

  274. Lee C-C et al (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:1793–1796

    PubMed  CAS  Google Scholar 

  275. Cho, JS et al (2006) in Nuclear Science Symposium Conference Record, 2006. IEEE. 1977–1981. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4179415

  276. Vu NT et al (2006) in Nuclear Science Symposium Conference Record, 2006. IEEE. 3536–3539. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4179804

  277. Judenhofer MS et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    PubMed  CAS  Google Scholar 

  278. Catana C et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci 105:3705–3710

    PubMed  CAS  Google Scholar 

  279. Esenaliev RO et al (2002) Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl Opt 41:4722–4731

    PubMed  Google Scholar 

  280. Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M (2008) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9(1): 287–291, http://pubs.acs.org/doi/abs/10.1021/nl802915q

    Google Scholar 

  281. Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic molecular imaging of small animals. Mol Imaging 2:113–123

    PubMed  Google Scholar 

  282. Chaudhari AJ et al (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441

    PubMed  Google Scholar 

  283. Zavattini G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51:2029–2043

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Douraghy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Douraghy, A., Chatziioannou, A.F. (2010). Preclinical Imaging. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics