Skip to main content

Tracer Kinetic Modeling: Methodology and Applications

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

Positron emission tomography (PET) is a medical imaging technique based on the simultaneous detection of pairs of 511-keV gamma radiations emitted by the annihilation of positrons within the subject following administration of a radiotracer. The radiotracer could be any pharmacological molecule or a natural molecule, such as water (H2 15O) or carbon monoxide (11CO, C15O), where an atom or a group of atoms are replaced with a positron emitting isotope. These two particularities (i.e., radiation emission and radiotracer labeling) provide the functionality and the versatility of PET. In addition, the use of PET to measure noninvasively biochemical and physiological reactions in a tissue as a function of time greatly contributes to a new avenue in medicine. PET has a picomolar sensitivity and can acquire images in frames of 10 s in humans and almost 3 s in small animals, providing dynamic insights in living tissues. Moreover, and since a tissue can be imaged by an appropriate radiotracer, both diseased and healthy tissues can be measured by PET. Among such applications are cancer and cognitive studies. These advantageous particularities of PET are exploited, however, at a substantially high cost, which can mainly be because of the necessity to include a cyclotron as part of the imaging center and to involve radiochemists or radiopharmacists and physicists to work within the same team in addition to clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karp JS, Daube-Witherspoon ME, Hoffman EJ, Lewellen TK, Links JM, Wong WH, Hichwa RD, Casey ME, Colsher JG, Hitchens RE, Muehllehner G, Stoub EW (1991) Performance standards in positron emission tomography. J Nucl Med 32:2342–2350

    PubMed  CAS  Google Scholar 

  2. Hasegawa T, Wada Y, Murayama H, Nakajima T (1999) Basic performance of PET scanner, EXACT HR+, with adjustable data-acquisition parameters. IEEE Trans Nucl Sci 40(3):652–658

    Article  Google Scholar 

  3. Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ (2001) Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 42:1821–1830

    PubMed  CAS  Google Scholar 

  4. Suk JY, Thompson CJ, Labuda A, Goertzen AL (2008) Improvement of the spatial resolution of the MicroPET R4 scanner by wobbling the bed. Med Phys 35(4):1223–1231

    Article  PubMed  Google Scholar 

  5. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effects of object size. J Comput Assist Tomogr 3:299–308

    Article  PubMed  CAS  Google Scholar 

  6. Meltzer CC, Leal JP, Mayberg HS, Wagner HJ, Frost JJ (1990) Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14:561–570

    Article  PubMed  CAS  Google Scholar 

  7. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911

    PubMed  CAS  Google Scholar 

  8. Meltzer C, Kinahan P, Greer P, Nichols TE, Comtat C, Cantwell MN, Lin MP, Price JC (1999) Comparative evaluation of MR-based partial volume correction schemes for PET. J Nucl Med 40:2053–2065

    PubMed  CAS  Google Scholar 

  9. Aston JAD, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN (2002) Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab 22:1019–1034

    Article  PubMed  Google Scholar 

  10. Boussion N, Hatt M, Lamare F, Bizais Y, Turzo A, Cheze-Le Rest C, Visvikis D (2006) A multiresolution image based approach for correction of partial volume effects in emission tomography. Phys Med Biol 51:1857–1876

    Article  PubMed  CAS  Google Scholar 

  11. Soret M, Bacharach SL, Buvat I (2007) Partial volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  PubMed  Google Scholar 

  12. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594

    Article  Google Scholar 

  13. Kinahan PE, Townsend DW, Beyer T et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053

    Article  PubMed  CAS  Google Scholar 

  14. Burger C, Goerres G, Schoenes S et al (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927

    Article  PubMed  CAS  Google Scholar 

  15. Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179

    Article  PubMed  Google Scholar 

  16. Watson CC, Rappoport V, Faul D et al (2006) A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 53:102–107

    Article  CAS  Google Scholar 

  17. Carney JP, Townsend DW, Rappoport V et al (2006) Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 33:976–983

    Article  PubMed  Google Scholar 

  18. Townsend WD (2008) Positron emission tomography/computed tomography. Semin Nucl Med 38:152–166

    Article  PubMed  Google Scholar 

  19. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1:113–122

    Article  Google Scholar 

  20. Kak AC, Slaney M (1998) Principles of computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  21. Hudson H, Larkin R (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  PubMed  CAS  Google Scholar 

  22. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:145–158

    Article  PubMed  CAS  Google Scholar 

  23. Alenius S, Ruotsalainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24:258–265

    PubMed  CAS  Google Scholar 

  24. Kinahan PE, Rodgers JG (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36:964–968

    Article  CAS  Google Scholar 

  25. Liu X, Comtat C, Michel C et al (2001) Comparison of 3-D reconstruction with 3D-OSEM and with FORE_OSEM for PET. IEEE Trans Med Imaging 20:804–814

    Article  PubMed  CAS  Google Scholar 

  26. Popescu LM, Matej S, Lewitt RM (2004) Iterative image reconstruction using geometrically ordered subsets with list-mode data. Nucl Sci Symp Conf Rec 6:3536–3540

    Google Scholar 

  27. Huesman RH (1984) A new fast algorithm for evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 29:543–552

    Article  PubMed  CAS  Google Scholar 

  28. Carson RE, Lange K (1985) The EM parametric image reconstruction algorithm. J Am Stat Assoc 80:20–22

    Google Scholar 

  29. Maguire RP, Calonder C, Leenders KL (1997) An investigation of multiple time/graphical analysis applied to projection data: theory and validation. J Comput Assist Tomogr 21:327–331

    Article  PubMed  CAS  Google Scholar 

  30. Huesman RH, Reutter BW, Zeng GL, Gullberg TL (1998) Kinetic parameter estimation from SPECT cone-beam projection measurements. Phys Med Biol 43:973–982

    Article  PubMed  CAS  Google Scholar 

  31. Matthews J, Bailey D, Price P, Cunningham V (1997) The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Phys Med Biol 42:1155–1173

    Article  PubMed  CAS  Google Scholar 

  32. Meikle SR, Matthews JC, Cunningham V, Bailey DL, Livieratos L, Jones T, Price P (1998) Parametric image reconstruction using spectral analysis of PET projection data. Phys Med Biol 43:651–666

    Article  PubMed  CAS  Google Scholar 

  33. Bentourkia M (2003) PET kinetic modeling of 13 N-ammonia from sinograms in rats. IEEE Trans Nucl Sci 50(1):32–36

    Article  CAS  Google Scholar 

  34. Bentourkia M (2003) PET kinetic modeling of 11C-acetate from projections. Comput Med Imaging Graph 27:373–379

    Article  PubMed  Google Scholar 

  35. Arhjoul L, Bentourkia M (2007) Assessment of glucose metabolism from the projections using the wavelet technique in small animal PET imaging. Comp Med Imaging Graph 31:157–165

    Article  Google Scholar 

  36. Kamasak ME, Bouman CA, Morris ED, Sauer K (2005) Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging 24(5):636–650

    Article  PubMed  CAS  Google Scholar 

  37. Gallagher MB, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19(10):1154–1161

    PubMed  CAS  Google Scholar 

  38. Raichle ME, Larson KB, Phelps ME et al (1975) In vivo measurement of brain glucose transport and metabolism employing glucose-11C. Am J Physiol 228:1936–1948

    PubMed  CAS  Google Scholar 

  39. Kuhl DE, Phelps ME, Hoffman EJ et al (1977) Initial clinical experience with 18F-2-deoxy-D-glucose for determination of local cerebral glucose utilization by emission computed tomography. Acta Neurol Scand 56(64):192–193

    Google Scholar 

  40. Reivich M, Kuhl D, Wolf A et al (1977) Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-D-glucose. Acta Neurol Scand 56(64):192–193

    Google Scholar 

  41. Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  PubMed  CAS  Google Scholar 

  42. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  43. Nauck MA, Lie H, Siegel EG, Niedmann PD, Creutzfeldt W (1992) Critical evaluation of the “heated-hand-technique” for obtaining “arterialized” venous blood: incomplete arterialization and alterations in glucagon responses. Clin Physiol 12:537–552

    Article  PubMed  CAS  Google Scholar 

  44. MacDonald IA (1999) Arterio-venous differences to study macronutrient metabolism: introduction and overview. Proc Nutr Soc 58:871–875

    Article  PubMed  CAS  Google Scholar 

  45. McGuire EAH, Helderman JH, Tobin JD, Andres R, Berman M (1976) Effects of arterial versus venous sampling on analysis of glucose kinetics in man. J Appl Physiol 41:565–573

    PubMed  CAS  Google Scholar 

  46. Abumrad NN, Rabin D, Diamond MP, Lacy WW (1981) Use of heated superficial hand vein as an alternative site for the measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man. Metabolism 30:936–940

    Article  PubMed  CAS  Google Scholar 

  47. Sonnenberg E, Keller U (1982) Sampling of arterialized heated-hand venous blood as a non-invasive technique for the study of ketone body kinetics in man. Metabolism 31:l–5

    Article  Google Scholar 

  48. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA (2001) Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 28(1):81–89

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto S, Tarutani K, Suga M, Minato K, Watabe H, Iida H (2001) Development of a phoswich detector for a continuous blood-sampling system. IEEE Trans Nucl Sci 48:1408–1411

    Article  Google Scholar 

  50. Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L (2004) Arterial input function measurement without blood sampling using a β-microprobe in rats. J Nucl Med 45:1577–1582

    PubMed  Google Scholar 

  51. Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R (2007) A new tool for molecular imaging: the microvolumetric β blood counter. J Nucl Med 48:1197–1206

    Article  PubMed  CAS  Google Scholar 

  52. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30(3):359–366

    PubMed  CAS  Google Scholar 

  53. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T (1992) Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 33(9):1669–1677

    PubMed  CAS  Google Scholar 

  54. Lin KP, Huang SC, Choi Y, Brunken RC, Schelbert HR, Phelps ME (1995) Correction of spillover radioactivities for estimation of the blood time-activity curve from the imaged LV chamber in cardiac dynamic FDG PET studies. Phys Med Biol 40(4):629–642

    Article  PubMed  CAS  Google Scholar 

  55. Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S et al (1991) Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 32(7):1432–1438

    PubMed  CAS  Google Scholar 

  56. Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME (1992) Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 33(4):620–622

    Google Scholar 

  57. Litton JE (1997) Input function in PET brain studies using MR-defined arteries. J Comput Assist Tomogr 21(6):907–909

    Article  PubMed  CAS  Google Scholar 

  58. Hoekstra CJ, Hoekstra OS, Lammertsma AA (1999) On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 26(11):1489–1492

    Article  PubMed  CAS  Google Scholar 

  59. Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, Bacharach SL, Carson RE (2001) Noninvasive estimation of the aorta input function for measurement of tumor blood flow with. IEEE Trans Med Imaging 20(3):164–174

    Article  PubMed  CAS  Google Scholar 

  60. Barber DC (1980) The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys Med Biol 25(2):283–292

    Article  PubMed  CAS  Google Scholar 

  61. Di Paola R, Bazin JP, Aubry F, Aurengo A, Cavailloles F, Herry JY et al (1982) Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 29:1310–1321

    Article  Google Scholar 

  62. Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME et al (1995) Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 36(9):1714–1722

    PubMed  CAS  Google Scholar 

  63. Bentourkia M (2005) Kinetic modeling of PET data without blood sampling. IEEE Trans Nucl Sci 52(3):697–702

    Article  CAS  Google Scholar 

  64. Kim J, Herrero P, Sharp T, Laforest R, Rowland DJ, Tai YC et al (2006) Minimally invasive method of determining blood input function from PET images in rodents. J Nucl Med 47(2):330–336

    PubMed  Google Scholar 

  65. Shoghi KI, Rowland DJ, Laforest R, Welch MJ (2006). Characterization of spillover and recovery coefficients in the gated mouse heart for noninvasive extraction of input function in microPET studies: feasibility and sensitivity analysis. IEEE Nucl Sci Symp 4:2134–2136

    Google Scholar 

  66. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, Seo K, Park KS, Chung JK, Lee MC (2001) Blind separation of cardiac components and extraction of input function from H(2)(15)O dynamic myocardial PET using independent component analysis. J Nucl Med 42(6):938–943

    PubMed  CAS  Google Scholar 

  67. Magadan-Mendez M, Kivimaki A, Ruotsalainen U (2004). ICA separation of functional components from dynamic cardiac PET data. NSS & MIC Conference

    Google Scholar 

  68. Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A (2005) Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 52(2):201–210

    Article  PubMed  Google Scholar 

  69. Chen K, Chen X, Renaut R, Alexander GE, Bandy D, Guo H, Reiman EM (2007) Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images. Phys Med Biol 52(23):7055–7071

    Article  PubMed  CAS  Google Scholar 

  70. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, Margouleff D, Eidelberg D (1993) Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188(1):131–136

    PubMed  CAS  Google Scholar 

  71. Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ (1997) Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 24(3):299–304

    PubMed  CAS  Google Scholar 

  72. Wakita K, Imahori Y, Ido T, Fujii R, Horii H, Shimizu M, Nakajima S, Mineura K, Nakamura T, Kanatsuna T (2000) Simplification for measuring input function of FDG PET: investigation of 1-point blood sampling method. J Nucl Med 41(9):1484–1490

    PubMed  CAS  Google Scholar 

  73. Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13:15–23

    Article  PubMed  CAS  Google Scholar 

  74. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  75. Feng D, Wong KP, Wu CM, Siu WC (1997) A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inf Technol Biomed 1(4):243–254

    Article  PubMed  CAS  Google Scholar 

  76. Bentourkia M (2006) Kinetic modeling of PET-FDG in the brain without blood sampling. Comput Med Imaging Graph 30:447–451

    Article  PubMed  Google Scholar 

  77. Carson RE, Breier A, de Bartolomeis A, Saunders RC, Su TP, Schmall B, Der MG, Pickar D, Eckelman WC (1997) Quantification of amphetamine-induced changes in [11C] raclopride binding with continuous infusion. J Cereb Blood Flow Metab 17:437–447

    Article  PubMed  CAS  Google Scholar 

  78. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18:941–950

    Article  PubMed  CAS  Google Scholar 

  79. Bérard V, Rousseau J, Cadorette J, Hubert L, Bentourkia M, van Lier JE, Lecomte R (2006) Dynamic imaging of transient metabolic processes by small animal positron emission tomography for the evaluation of photosensitizers in photodynamic therapy of cancer. J Nucl Med 47:1119–1126

    PubMed  Google Scholar 

  80. Bentourkia M, Boubacar P, Bérard V, van Lier JE, Lecomte R (2007) Kinetic modeling of PET data and FDG continuous infusion in rat tumors simultaneously treated with PDT. IEEE Nuclear Science Symposium and Medical Imaging Conference, October 28 – November 3, 2007

    Google Scholar 

  81. Delbeke D (1999) Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 40:591–603

    PubMed  CAS  Google Scholar 

  82. Lucas JD, O’Doherty MJ, Cronin BF et al (1999) Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 86:550–556

    Article  PubMed  CAS  Google Scholar 

  83. Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL (1999) Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 211:249–256

    PubMed  CAS  Google Scholar 

  84. Kubota K, Yamada S, Ishiwata K, Ito M, Ido T (1992) Positron emission tomography for treatment evaluation and recurrence detection compared with CT in long-term follow-up cases of lung cancer. Clin Nucl Med 17:877–881

    Article  PubMed  CAS  Google Scholar 

  85. Hunter GJ, Hamberg LM, Choi N, Jain RK, McCloud T, Fischman AJ (1988) Dynamic T1-weighted magnetic resonance imaging and positron emission tomography in patients with lung cancer: correlating vascular physiology with glucose metabolism. Clin Cancer Res 4:949–955

    Google Scholar 

  86. Bol A, Melin JA, Vanoverschelde JL, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M, Robert A, Heyndrickx GR, Wijns W (1993) Direct comparison of (nitrogen-13) ammonia and (oxygen-15)water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87(2):512–525

    Article  PubMed  CAS  Google Scholar 

  87. Wahl ML, Ce Asselin M, Nahmias C (1999) Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med 40:1666–1675

    PubMed  CAS  Google Scholar 

  88. Lee JS, Su KH, Lin JC et al (2008) A novel blood-cell-two-compartment model for transferring a whole blood time activity curve to plasma in rodents. Comput Meth Programs Biomed 92(3):299–304

    Article  Google Scholar 

  89. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5(2):179–192

    Article  PubMed  CAS  Google Scholar 

  90. Graham MM, Muzi M, Spence AM, O’Sullivan F, Lewellen TK, Links JM, Krohn KA (2002) The FDG lumped constant in normal human brain. J Nucl Med 43:1157–1166

    PubMed  Google Scholar 

  91. Hasselbalch SG, Madsen PL, Knudsen GM, Holm S, Paulson OB (1998) Calculation of the FDG lumped constant by simultaneous measurements of global glucose and FDG metabolism in humans. J Cereb Blood Flow Metab 18:154–160

    Article  PubMed  CAS  Google Scholar 

  92. PressWH TSA, Vetterling WT, Flannery BP (1988) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  93. Hutchins G, Holden J, Koeppe R, Halama J, Gatley S, Nickles R (1984) Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab 4:35–40

    Article  PubMed  CAS  Google Scholar 

  94. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  PubMed  CAS  Google Scholar 

  95. Gjedde A, Wienhard K, Heiss W et al (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5:163–178

    Article  PubMed  CAS  Google Scholar 

  96. Kitsukawa S, Yoshida K, Mullani N et al (1998) Simple and Patlak models for myocardial blood flow measurements with nitrogen-13-ammonia and PET in humans. J Nucl Med 39:1123–1128

    PubMed  CAS  Google Scholar 

  97. Turkheimer F, Sokoloff L, Bertoldo A, Lucignani G, Reivich M, Jaggi JL, Schmidt K (1998) Estimation of component and parameter distributions in spectral analysis. J Cereb Blood Flow Metab 18(11):1211–1222

    Article  PubMed  CAS  Google Scholar 

  98. Buck AH, Wolpers HG, Hutchins GD, Savas V, Mangner TJ, Nguyen N, Schwaiger M (1991) Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 32(10):1950–1957

    PubMed  CAS  Google Scholar 

  99. Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs, p 161, Chapter 23

    Google Scholar 

  100. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652

    Article  PubMed  CAS  Google Scholar 

  101. Muzik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M (1993) Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34:83–91

    PubMed  CAS  Google Scholar 

  102. Huang SC (2000) Anatomy of SUV. Nucl Med Biol 27:643–646

    Article  PubMed  CAS  Google Scholar 

  103. Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25:651–656

    Article  PubMed  CAS  Google Scholar 

  104. Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45:1431–1434

    PubMed  Google Scholar 

  105. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847–850

    PubMed  CAS  Google Scholar 

  106. Keyes JWJ (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  107. Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham VJ (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modelling. J Cereb Blood Flow Metab 22(12):1425–1439

    Article  PubMed  CAS  Google Scholar 

  108. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T (1991) A normalization technique for 3D PET data. Phys Med Biol 36(7):939–952

    Article  PubMed  CAS  Google Scholar 

  109. Bailey DL, Jones T (1997) A method for calibrating three-dimensional positron emission tomography without scatter correction. Eur J Nucl Med 24:660–664

    PubMed  CAS  Google Scholar 

  110. Thomas MDR, Bailey DL, Livieratos L (2005) A dual modality approach to quantitative quality control in emission tomography. Phys Med Biol 50:N187–N194

    Article  PubMed  Google Scholar 

  111. Cherry SR, Huang SC (1995) Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 42(4):1174–1179

    Article  Google Scholar 

  112. Iida H, Narita Y, Kado H et al (1998) Effect of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 39:181–189

    PubMed  CAS  Google Scholar 

  113. Kim KM, Watabe H, Shidahara M, Onishi Y, Yonekura Y, Iida H (2001) Impact of scatter correction in the kinetic analysis of a D2 receptor ligand SPECT study. IEEE Nuclear Science Symposium Conference Record

    Google Scholar 

  114. Chow PL, Rannou FR, Chatziioannou AF (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50(8):1837–1850

    Article  PubMed  Google Scholar 

  115. National Electrical Manufacturers Association (2001) NEMA standards publication NU 2-2001. National Electrical Manufacturers Association, Rosslyn

    Google Scholar 

  116. International Electrotechnical Commission (1998) IEC Standard 61675-1: Radionuclide imaging devices – characteristics and test conditions. Part 1. Positron emission tomographs. International Electrotechnical Commission, Geneva

    Google Scholar 

  117. Selivanov V, Lapointe D, Bentourkia M, Lecomte R (2001) Cross-validation stopping rule for ML-EM reconstruction of dynamic PET series: effect on image quality and quantitative accuracy. IEEE Trans Nucl Sci 48:883–889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Bentourkia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bentourkia, M. (2010). Tracer Kinetic Modeling: Methodology and Applications. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics