Skip to main content

Tracer Kinetic Modeling: Basics and Concepts

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

In nuclear medicine all studies are dynamic. This may seem like a controversial statement as most studies performed in nuclear medicine departments consist of a single static scan. However, even in this case, the temporal dimension plays an important role in terms of the time point for the scan after administration of the tracer as well as its length.

This chapter is dedicated to the memory of Prof. Lyn S Pilowsky.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parameter identifiability means that a change in the parameter values should always lead to a change in the output function [17].

  2. 2.

    Quote usually attributed to George Box.

References

  1. Cunningham VJ, Gunn RN, Matthews JC (2004) Quantification in positron emission tomography for research in pharmacology and drug development. Nucl Med Commun 25:643–646

    Article  PubMed  CAS  Google Scholar 

  2. Laruelle M (2000) The role of model-based methods in the development of single scan techniques. Nucl Med Biol 27:637–642

    Article  PubMed  CAS  Google Scholar 

  3. Carson RE (1991) The development and application of mathematical models in nuclear medicine. J Nucl Med 32:2206–2208

    PubMed  CAS  Google Scholar 

  4. Leenders KL (2003) In: PET pharmacokinetic course manual. Maguire RP, Leenders KL (eds) Chap. 1, University of Groningen, Groningen, The Netherlands and McGill University, Canada

    Google Scholar 

  5. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652

    Article  PubMed  CAS  Google Scholar 

  6. Arfken G (1985) Mathematical methods for physicists. Academic, San Diego

    Google Scholar 

  7. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  8. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  9. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Investig 27:476–483

    Article  PubMed  CAS  Google Scholar 

  10. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  CAS  Google Scholar 

  11. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  CAS  Google Scholar 

  12. Crone C (1963) The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 58:292–305

    Article  PubMed  CAS  Google Scholar 

  13. Kerwin RW, Pilowsky LS (1995) Traditional receptor theory and its application to neuroreceptor measurements in functional imaging. Eur J Nucl Med 22:699–710

    Article  PubMed  CAS  Google Scholar 

  14. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Z 49:1333

    Google Scholar 

  15. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–665

    Article  CAS  Google Scholar 

  16. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Article  PubMed  CAS  Google Scholar 

  17. Scheibe PO (2003) Identifiability analysis of second-order systems. Nucl Med Biol 30:827–832

    Article  PubMed  Google Scholar 

  18. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744

    Article  PubMed  CAS  Google Scholar 

  19. Erlandsson K, Bressan RA, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Wyper D, Ell PJ, Pilowsky LS (2003) Kinetic modelling of [123I]-CNS 1261 – a novel SPET tracer for the NMDA receptor. Nucl Med Biol 30:441–454

    Article  PubMed  CAS  Google Scholar 

  20. Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AK (1991) Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 11:1–9

    Article  PubMed  CAS  Google Scholar 

  21. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, Frackowiak RS (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 16:42–52

    Article  PubMed  CAS  Google Scholar 

  22. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  23. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  24. Erlandsson K, Sivananthan T, Lui D, Spezzi A, Townsend CE, Mu S, Lucas R, Warrington S, Ell PJ (2005) Measuring SSRI occupancy of SERT using the novel tracer [123I]ADAM: a SPECT validation study. Eur J Nucl Med Mol Imaging 32:329–336

    Article  Google Scholar 

  25. Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13:15–23

    Article  PubMed  CAS  Google Scholar 

  26. Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham VJ (2002) Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modelling. J Cereb Blood Flow Metab 22:1425–1439

    Article  PubMed  CAS  Google Scholar 

  27. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(–)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  PubMed  CAS  Google Scholar 

  28. Slifstein M, Laruelle M (2000) Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 41:2083–2088

    PubMed  CAS  Google Scholar 

  29. Ogden RT (2003) Estimation of kinetic parameters in graphical analysis of PET imaging data. Stat Med 22:3557–3568

    Article  PubMed  Google Scholar 

  30. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  PubMed  CAS  Google Scholar 

  31. Carson RE (2000) PET physiological measurements using constant infusion. Nucl Med Biol 27:657–660

    Article  PubMed  CAS  Google Scholar 

  32. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13:24–42

    Article  PubMed  CAS  Google Scholar 

  33. Kawai R, Carson RE, Dunn B, Newman AH, Rice KC, Blasberg RG (1991) Regional brain measurement of Bmax and KD with the opiate antagonist cyclofoxy: equilibrium studies in the conscious rat. J Cereb Blood Flow Metab 11:529–544

    Article  PubMed  CAS  Google Scholar 

  34. Holden JE, Jivan S, Ruth TJ, Doudet DJ (2002) In vivo receptor assay with multiple ligand concentrations: an equilibrium approach. J Cereb Blood Flow Metab 22:1132–1141

    Article  PubMed  CAS  Google Scholar 

  35. Bressan RA, Erlandsson K, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Cullum ID, Ell PJ, Pilowsky LS (2004) A bolus/infusion paradigm for the novel NMDA receptor SPET tracer [123I]CNS 1261. Nucl Med Biol 31:155–164

    Article  PubMed  CAS  Google Scholar 

  36. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  37. Cunningham VJ (1985) Non-linear regression techniques in data analysis. Med Inform (Lond) 10:137–142

    Article  CAS  Google Scholar 

  38. Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6:461–464

    Article  Google Scholar 

  39. Ogden RT, Ojha A, Erlandsson K, Oquendo MA, Mann JJ, Parsey RV (2007) In vivo quantification of serotonin transporters using [11C]DASB and positron emission tomography in humans: modeling considerations. J Cereb Blood Flow Metab 27:205–217

    Article  PubMed  CAS  Google Scholar 

  40. Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NP, Kerwin RW (1992) Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340:199–202

    Article  PubMed  CAS  Google Scholar 

  41. Travis MJ, Busatto GF, Pilowsky LS, Mulligan R, Acton PD, Gacinovic S, Mertens J, Terriere D, Costa DC, Ell PJ, Kerwin RW (1998) 5-HT2A receptor blockade in patients with schizophrenia treated with risperidone or clozapine. A SPET study using the novel 5-HT2A ligand 123I-5-I-R-91150. Br J Psychiatry 173:236–241

    Article  PubMed  CAS  Google Scholar 

  42. Pilowsky LS, Mulligan RS, Acton PD, Ell PJ, Costa DC, Kerwin RW (1997) Limbic selectivity of clozapine. Lancet 350:490–491

    Article  PubMed  CAS  Google Scholar 

  43. Erlandsson K, Bressan RA, Mulligan RS, Ell PJ, Cunningham VJ, Pilowsky LS (2003) Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I]epidepride: resolving conflicting findings. Neuroimage 19:1205–1214

    Article  PubMed  Google Scholar 

  44. Stone JM, Davis JM, Leucht S, Pilowsky LS (2009) Cortical dopamine D2/D3 receptors are a common site of action for antipsychotic drugs – an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schizophrenia Bulletin 35:789–797

    Article  PubMed  Google Scholar 

  45. Ichise M, Meyer JH, Yonekura Y (2001) An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med 42:755–763

    PubMed  CAS  Google Scholar 

  46. Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Brian F Hutton (University College London, UK) and Prof. Roger N Gunn (Glaxo Smith Kline, London, UK and University of Oxford, UK) for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Erlandsson .

Editor information

Editors and Affiliations

Appendices

Appendix A – Compartmental Models

Expressions for the impulse response functions for the 1-TC and 2-TC models are derived below. L{·} represents the Laplace transform, Laplace-domain functions are identified with a tilde, and s is a complex Laplace domain variable.

1.1 The 1-TC Model

$$ \begin{array}{l} \frac{\text{d}}{{{\hbox{d}}t}}{C_T}(t) = {K_1}{C_p}(t) - {k_2}^{\prime \prime }{C_T}(t) \\ \hskip 4pc\Leftrightarrow \\ L\left\{ {\frac{\text{d}}{{{\hbox{d}}t}}{C_T}(t)} \right\} = L\left\{ {{K_1}{C_p}(t) - {k_2}^{\prime \prime }{C_T}(t)} \right\} \\ \hskip 4pc\Leftrightarrow \\ s{{\hat{C}}_T}(s) - {C_T}(0) = {K_1}{{\hat{C}}_p}(s) - {k_2}^{\prime \prime }{{\hat{C}}_T}(s) \\ \hskip 4pc\Rightarrow \\\end{array} $$

With initial condition, C T (0)=0:

$$ {\hat{C}_T}(s) = \frac{{{K_1}}}{{s + {k_2}^{\prime \prime }}}{\hat{C}_p}(s) $$
$$ \begin{array}{l} \hskip 4pc\Leftrightarrow \\ {C_T}(t) = {K_1}{{\hbox{e}}^{ - {k_2}^{\prime \prime }t}} \otimes {C_p}(t) \\ \hskip 4pc\Leftrightarrow \\\end{array} $$

Impulse response function:

$$ {H_1}(t) = {K_1}{{\hbox{e}}^{ - {k_2}^{\prime \prime }t}} $$

1.2 The 2-TC Model

$$ \begin{array}{l} \left\{ \begin{array}{l} \frac{\text{d}}{{{\hbox{d}}t}}{C_{ND}}(t) = {K_1}{C_p}(t) - \left( {{k_2}' + {k_3}'} \right){C_{ND}}(t) + {k_4}{C_S}(t) \\ \frac{\text{d}}{{{\hbox{d}}t}}{C_S}(t) = {k_3}'{C_{ND}}(t) - {k_4}{C_S}(t) \\\end{array} \right. \\ \hskip -9pc\Leftrightarrow \\\left\{ \begin{array}{l} s{{\hat{C}}_{ND}}(s) - {C_{ND}}(0) = {K_1}{{\hat{C}}_p}(s) - ({k_2}' + {k_3}'){{\hat{C}}_{ND}}(s) + {k_4}{{\hat{C}}_S}(s) \\ s{{\hat{C}}_S}(s) - {C_S}(0) = {k_3}'{{\hat{C}}_{ND}}(s) - {k_4}{{\hat{C}}_S}(s) \\\end{array} \right. \\\end{array} $$

With initial conditions, C ND (0) = C S (0) = 0:

$$ \begin{array}{l} \hskip -8pc\Rightarrow \\\left\{ \begin{array}{l} \left( {s + {k_2}^\prime + {k_3}^\prime } \right){{\hat{C}}_{ND}}(s) = {K_1}{{\hat{C}}_p}(s) + {k_4}{{\hat{C}}_S}(s) \\ \left( {s + {k_4}} \right){{\hat{C}}_S}(s) = {k_3}'{{\hat{C}}_{ND}}(s) \\\end{array} \right. \\\end{array} $$
$$ \begin{array}{l} \hskip -9pc\Leftrightarrow \\\left\{ \begin{array}{l} {{\hat{C}}_{ND}}(s) = {\left( {s + {k_2}^\prime + {k_3}^\prime - \frac{{{k_3}^\prime {k_4}}}{{s + {k_4}}}} \right)^{ - 1}}{K_1}{{\hat{C}}_p}(s) \\ {{\hat{C}}_S}(s) = \frac{{{k_3}^\prime }}{{s + {k_4}}}{{\hat{C}}_{ND}}(s) \\\end{array} \right. \\\end{array} $$
$$ \begin{array}{l} \hskip 7pc\Rightarrow \\{{\hat{C}}_T}(s) \equiv {{\hat{C}}_{ND}}(s) + {{\hat{C}}_S}(s) = \left( {1 + \frac{{{k_3}'}}{{s + {k_4}}}} \right){{\hat{C}}_{ND}}(s) \\ = \left( {\frac{{s + {k_3}' + {k_4}}}{{s + {k_4}}}} \right)\left( {\frac{{s + {k_4}}}{{(s + {k_2}' + {k_3}')(s + {k_4}) - {k_3}'{k_4}}}} \right){K_1}{{\hat{C}}_p}(s) \\\end{array} $$
$$ \ = \left( {\frac{{s + {k_3}^\prime + {k_4}}}{{{s^2} + \left( {{k_2}^\prime + {k_3}^\prime + {k_4}} \right)s + {k_2}^\prime {k_4}}}} \right){K_1}{\hat{C}_p}(s) $$

Find poles:

$$ \begin{array}{l} {s^2} + ({k_2}' + {k_3}' + {k_4})s + {k_2}'{k_4} = 0 \\ \hskip 8pc\Leftrightarrow \\ s = - \frac{1}{2}\left( {{k_2}' + {k_3}' + {k_4} \mp \sqrt {{{{({k_2}' + {k_3}' + {k_4})}^2} - 4{k_2}'{k_4}}} } \right) \equiv - {\theta_{1,2}} \\ \hskip 7pc\sim \;\sim \;\sim \\\end{array} $$

Partial fraction expansion:

$$ \begin{array}{l}\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}} = {K_1}\frac{{s + {k_3}' + {k_4}}}{{{s^2} + ({k_2}' + {k_3}' + {k_4})s + {k_2}'{k_4}}} \\\end{array}$$
$$ \begin{array}{l} \hskip -5pc\Leftrightarrow \\\left\{ \begin{array}{l} {\phi_1} = {K_1}\frac{{{k_3}' + {k_4} - {\theta_1}}}{{{\theta_2} - {\theta_1}}} \\{\phi_2} = - {K_1}\frac{{{k_3}' + {k_4} - {\theta_2}}}{{{\theta_2} - {\theta_1}}} \\\end{array} \right. \\\end{array} $$
$$ \sim \;\sim \;\sim \quad\quad \\{(16.27)} + {(16.28)} \\\Rightarrow \\ $$
$$ {\hat{C}_T}(s) = \left( {\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}}} \right){\hat{C}_p}(s) $$
$$ \begin{array}{l} \hskip -6pc\Leftrightarrow \\{C_T}(t) = \left( {{\phi_1}{e^{ - {\theta_1}t}} + {\phi_2}{e^{ - {\theta_2}t}}} \right) \otimes {C_p}(t) \\ \hskip -6pc\Leftrightarrow \\\end{array} $$

Impulse response function:

$$ {H_2}(t) = {\phi_1}{e^{ - {\theta_1}t}} + {\phi_2}{e^{ - {\theta_2}t}} $$

Appendix B – Outcome Measures

2.1 Volume of Distribution

For the 1-TC model we obtain:

$$ \frac{\text{d}}{{{\hbox{d}}t}}{C_T}(t) = {K_1}{C_p}(t) - {k_2}^{\prime \prime }{C_T}(t) = 0 \\\Rightarrow \\{V_T} \equiv {\left[ {\frac{{{C_T}(t)}}{{{C_p}(t)}}} \right]_{eq}} = \frac{{{K_1}}}{{{k_2}^{\prime \prime }}} \\ $$
((16.31a))

for the 2-TC model:

$$ \left\{ \begin{array}{l} \frac{\text{d}}{{{\hbox{d}}t}}{C_{ND}}(t) = {K_1}{C_p}(t) - \left( {{k_2}^\prime + {k_3}^\prime } \right){C_{ND}}(t) + {k_4}{C_S}(t) = 0 \\\frac{\text{d}}{{{\hbox{d}}t}}{C_S}(t) = {k_3}^\prime {C_{ND}}(t) - {k_4}{C_S}(t) = 0 \\\end{array} \right. $$
$$ \begin{array}{l} \hskip -3pc\Rightarrow \\\left\{ \begin{array}{l} {\left[ {\frac{{{C_{ND}}(t)}}{{{C_p}(t)}}} \right]_{eq}} = \frac{{{K_1}}}{{{k_2}^\prime }} \\{\left[ {\frac{{{C_S}(t)}}{{{C_{ND}}(t)}}} \right]_{eq}} = \frac{{{k_3}^\prime }}{{{k_4}}} \\\end{array} \right. \\\end{array} $$
((16.31b))
$$ \begin{array}{l} \hskip -1pc\Rightarrow \\{V_T} \equiv {\left[ {\frac{{{C_{ND}}(t) + {C_S}(t)}}{{{C_p}(t)}}} \right]_{eq}} = {\left[ {\frac{{{C_{ND}}(t)\left( {1 + {k_3}'/{k_4}} \right)}}{{{C_p}(t)}}} \right]_{eq}} \cr = \frac{{{K_1}}}{{{k_2}'}}\left( {1 + \frac{{{k_3}'}}{{{k_4}}}} \right) \\\end{array} $$

and similarly for the 3-TC model:

$$ {V_T} \equiv {\left[ {\frac{{{C_F}(t) + {C_{NS}}(t) + {C_S}(t)}}{{{C_p}(t)}}} \right]_{eq}} = \frac{{{K_1}}}{{{k_2}}}\left( {1 + \frac{{{k_3}}}{{{k_4}}} + \frac{{{k_5}}}{{{k_6}}}} \right) $$
((16.31c))

2.2 Binding Potential

Expressions for calculating BP F from different model parameters can be derived as shown below, using the identities k 3 = k on B avail, k 4 = k off, k 3′ = f ND k 3, k 2′ = f ND k 2, and K 1/k 2 = f p (from f p [C p ] eq = [C F ] eq and K 1[C p ] eq = k 2[C F ] eq ):

$$ BP\equiv \frac{{{B_{\max }}}}{{{K_D}}} \geq B{P_F} \equiv \frac{{{B_{\rm{avail}}}}}{{{K_D}}} = \frac{{{B_{\rm{avail}}}{k_{\rm{on}}}}}{{{k_{\rm{off}}}}} = \frac{{{k_3}}}{{{k_4}}} \\={(1/f_{ND})(k_{3}\prime/k_4)=} \frac{1}{{{f_p}}}\frac{{{K_1}{k_3}\prime }}{{{k_2}\prime {k_4}}} \\ $$

Appendix C – Reference Tissue Models

3.1 The Simplified Reference Tissue Model

$$ \left\{ \frac{\text{d}}{{{\hbox{d}}t}}{C_T}(t) = {K_1}{C_p}(t) - {k_2}^{\prime \prime }{C_T}(t) \hfill \\\frac{\text{d}}{{{\hbox{d}}t}}{C_R}(t) = {}^R{K_1}{C_p}(t) - {}^R{k_2}^\prime {C_R}(t) \hfill \\ \right. \\\Leftrightarrow \\ $$

From (16.25):

$$ \left\{ {{\hat{C}}_T}(s) = \frac{{{K_1}}}{{s + {k_2}^{\prime \prime }}}{{\hat{C}}_p}(s) \hfill \\{{\hat{C}}_R}(s) = \frac{{{}^R{K_1}}}{{s + {}^R{k_2}^\prime }}{{\hat{C}}_p}(s) \hfill \\ \right. \\\Rightarrow \\ $$
$$ \left( {{\hbox{with}}\;{R_1} = \frac{{{K_1}}}{{{}^R{K_1}}}} \right): $$
$$ {{\hat{C}}_T}(s)= {R_1}\frac{{s + {}^R{k_2}^\prime }}{{s + {k_2}^{\prime \prime }}}{{\hat{C}}_R}(s) \\= {R_1}{{\hat{C}}_R}(s) + {R_1}\frac{{{}^R{k_2}^\prime - {k_2}^{\prime \prime }}}{{s + {k_2}^{\prime \prime }}}{{\hat{C}}_R}(s) \\\Rightarrow \\{C_T}(t)= {R_1}{C_R}(t) + {R_1}\left( {{}^R{k_2}^\prime - {k_2}^{\prime \prime }} \right){{\hbox{e}}^{ - {k_2}^{\prime \prime }t}} \otimes {C_R}(t) \\\Leftrightarrow \\ $$

Impulse response function:

$$ {H_{1R}}(t) = {R_1}\delta (t) + {R_1}\left( {{}^R{k_2}^\prime - {k_2}^{\prime \prime }} \right){{\hbox{e}}^{ - {k_2}^{\prime \prime }t}} $$

where δ(t) is the Dirac delta-function.

3.2 The Full Reference Tissue Model

$$ \left\{ \begin{array}{l} \frac{\text{d}}{{{\hbox{d}}t}}{C_{ND}}(t) = {K_1}{C_p}(t) - \left( {{k_2}' + {k_3}'} \right){C_{ND}}(t) + {k_4}{C_S}(t) \\ \frac{\text{d}}{{{\hbox{d}}t}}{C_S}(t) = {k_3}'{C_{ND}}(t) - {k_4}{C_S}(t) \\ \frac{\text{d}}{{{\hbox{d}}t}}{C_R}(t) = {}^R{K_1}{C_p}(t) - {}^R{k_2}'{C_R}(t) \\\end{array} \right. $$

From (16.25) and (16.29):

$$ \begin{array}{l} \left\{ \begin{array}{l} {{\hat{C}}_T}(s) = \left( {\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}}} \right){{\hat{C}}_p}(s) \\{{\hat{C}}_R}(s) = \frac{{{}^R{K_1}}}{{s + {}^R{k_2}'}}{{\hat{C}}_p}(s) \\\end{array} \right. \cr \hskip 5pc\Rightarrow \\{{\hat{C}}_T}(s) = \left( {\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}}} \right)\frac{{s + {}^R{k_2}'}}{{{}^R{K_1}}}{{\hat{C}}_R}(s) \cr \hskip 5pc\Leftrightarrow \\\end{array} $$
$$ \left( {{\hbox{with}}\;{R_1} = \frac{{{K_1}}}{{{}^R{K_1}}}} \right): $$
$$ \begin{array}{l} \left\{ \begin{array}{l} {{\hat{C}}_T}(s) = \left( {\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}}} \right){{\hat{C}}_p}(s) \\{{\hat{C}}_R}(s) = \frac{{{}^R{K_1}}}{{s + {}^R{k_2}'}}{{\hat{C}}_p}(s) \\\end{array} \right. \cr \hskip 5pc\Rightarrow \\{{\hat{C}}_T}(s) = \left( {\frac{{{\phi_1}}}{{s + {\theta_1}}} + \frac{{{\phi_2}}}{{s + {\theta_2}}}} \right)\frac{{s + {}^R{k_2}'}}{{{}^R{K_1}}}{{\hat{C}}_R}(s) \cr \hskip 5pc\Leftrightarrow \\\end{array} $$
$$ {\hat{C}_T}(s) = {R_1}{\hat{C}_R}(s) + \left( {\frac{{{\rho_1}}}{{s + {\theta_1}}} + \frac{{{\rho_2}}}{{s + {\theta_2}}}} \right){\hat{C}_R}(s) $$

where

$$ \left\{ \openup2pt{\rho_1} = {R_1}\frac{{\left( {{k_3}\prime + {k_4} - {\theta_1}} \right)\left( {{}^R{k_2}\prime - {\theta_1}} \right)}}{{{\theta_2} - {\theta_1}}} \hfill \\{\rho_2} = - {R_1}\frac{{\left( {{k_3}\prime + {k_4} - {\theta_2}} \right)\left( {{}^R{k_2}\prime - {\theta_2}} \right)}}{{{\theta_2} - {\theta_1}}} \hfill \\ \right. $$
$$ \begin{array}{l} \hskip -9pc\sim \;\sim \;\sim \\ \hskip -8.2pc(34) \\ \hskip -8.1pc\Rightarrow \\{C_T}(t) = {R_1}{C_R}(t) + \left( {{\rho_1}{{\hbox{e}}^{ - {\theta_1}t}} + {\rho_2}{{\hbox{e}}^{ - {\theta_2}t}}} \right) \otimes {C_R}(t) \\ \hskip -8.2pc\Leftrightarrow \\\end{array} $$

Impulse response function:

$$ {H_{2R}}(t) = {R_1}\delta (t) + {\rho_1}{{\hbox{e}}^{ - {\theta_1}t}} + {\rho_2}{{\hbox{e}}^{ - {\theta_2}t}} $$

Appendix D – Logan Graphical Analysis

4.1 1-TC Model

$$ \frac{\text{d}}{{{\hbox{d}}t}}{C_T}(t)= {K_1}{C_p}(t) - {k_2}^{\prime \prime }{C_T}(t) \\\Leftrightarrow \\{C_T}(t) - {C_T}(0)= {K_1}\int\limits_0^t {{C_p}\left( \tau \right){\hbox{d}}\tau } - {k_2}^{\prime \prime }\int\limits_0^t {{C_T}\left( \tau \right){\hbox{d}}\tau } \\ $$

with C T (0)=0:

$$ \begin{array}{l} \hskip 1pc\Leftrightarrow \\\frac{{\int_0^t {{C_T}\left( \tau \right){\text{d}}\tau } }}{{{C_T}(t)}} = \frac{{{K_1}}}{{{k_2}^{\prime \prime }}}\frac{{\int_0^t {{C_p}\left( \tau \right){\text{d}}\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_2}^{\prime \prime }}} \\ \hskip 1pc\Rightarrow \\\end{array} $$
$$ \frac{{\int_0^t {{C_T}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} = {V_T}\frac{{\int_0^t {{C_p}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} + const. $$

4.2 2-TC Model

$$ \begin{array}{l} \left\{ \begin{array}{l} \frac{\text{d}}{{{\hbox{d}}t}}{C_{ND}}(t) = {K_1}{C_p}(t) - \left( {{k_2}' + {k_3}'} \right){C_{ND}}(t) + {k_4}{C_S}(t) \\ \frac{\text{d}}{{{\hbox{d}}t}}{C_S}(t) = {k_3}'{C_{ND}}(t) - {k_4}{C_S}(t) \\\end{array} \right. \\ \hskip 8pc\Leftrightarrow \\ \left\{ \begin{array}{l} {C_{ND}}(t) - {C_{ND}}(0) = {K_1}\int\limits_0^t {{C_p}(\tau ){\hbox{d}}\tau } - \left( {{k_2}' + {k_3}'} \right)\cr \qquad\qquad\qquad\qquad\times\int\limits_0^t {{C_{ND}}(\tau ){\hbox{d}}\tau } + {k_4}\int\limits_0^t {{C_S}(\tau ){\hbox{d}}\tau } \\ {C_S}(t) - {C_S}(0) = {k_3}'\int\limits_0^t {{C_{ND}}(\tau ){\hbox{d}}\tau } - {k_4}\int\limits_0^t {{C_S}(\tau ){\hbox{d}}\tau } \\\end{array} \right. \\\end{array} $$

with C ND (0)=C S (0)=0:

$$ \begin{array}{l} \hskip 6.8pc\Leftrightarrow \\ \left\{ \begin{array}{l} {C_T}(t) = {K_1}\int\limits_0^t {{C_p}(\tau ){\hbox{d}}\tau } - {k_2}'\int\limits_0^t {{C_{ND}}(\tau ){\hbox{d}}\tau } \\ {C_S}(t) = {k_3}'\int\limits_0^t {{C_{ND}}(\tau ){\hbox{d}}\tau } - {k_4}\int\limits_0^t {{C_S}(\tau ){\hbox{d}}\tau } \\\end{array} \right. \\\end{array} $$
$$ \begin{array}{l} \hskip 6.8pc\Leftrightarrow \\ \left\{ \begin{array}{l} \frac{{\int\limits_0^t {{C_{ND}}(\tau )d\tau } }}{{{C_T}(t)}} = \frac{{{K_1}}}{{{k_2}'}}\frac{{\int\limits_0^t {{C_p}(\tau )d\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_2}'}} \\ \frac{{\int\limits_0^t {{C_S}(\tau )d\tau } }}{{{C_T}(t)}} = \frac{{{k_3}'}}{{{k_4}}}\frac{{\int\limits_0^t {{C_{ND}}(\tau )d\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_4}}}\frac{{{C_S}(t)}}{{{C_T}(t)}} \\\end{array} \right. \\\end{array} $$
$$ \begin{array}{l} \hskip 5pc\Rightarrow \\\frac{{\int\limits_0^t {{C_T}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} \equiv \frac{{\int\limits_0^t {{C_{ND}}(\tau ) + {C_S}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} = \frac{{{K_1}}}{{{k_2}'}}\frac{{\int\limits_0^t {{C_p}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} \cr \quad - \frac{1}{{{k_2}'}} + \frac{{{k_3}'}}{{{k_4}}}\left( {\frac{{{K_1}}}{{{k_2}'}}\frac{{\int\limits_0^t {{C_p}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_2}'}}} \right) \cr \quad- \frac{1}{{{k_4}}}\frac{{{C_S}(t)}}{{{C_T}(t)}} \\ = \frac{{{K_1}}}{{{k_2}'}}\left( {1 + \frac{{{k_3}'}}{{{k_4}}}} \right)\frac{{\int\limits_0^t {{C_p}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_2}'}}\left( {1 + \frac{{{k_3}'}}{{{k_4}}}} \right) \cr \quad- \frac{1}{{{k_4}}}\frac{{{C_S}(t)}}{{{C_T}(t)}} \\\end{array} $$
$$ \begin{array}{l} \hskip -7.5pc\Leftrightarrow \\\frac{{\int\limits_0^t {{C_T}\left( \tau \right){\text{d}}\tau } }}{{{C_T}(t)}} = {V_T}\frac{{\int\limits_0^t {{C_p}\left( \tau \right){\text{d}}\tau } }}{{{C_T}(t)}} - \frac{1}{{{k_2}^{\prime \prime }}} - \frac{1}{{{k_4}}}\frac{{{C_S}(t)}}{{{C_T}(t)}} \\ \hskip -7.5pc\Rightarrow \\\end{array} $$

with C S (t)/C T (t)=constant (pseudoequilibrium):

$$ \frac{{\int\limits_0^t {{C_T}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} = {V_T}\frac{{\int\limits_0^t {{C_p}(\tau ){\text{d}}\tau } }}{{{C_T}(t)}} + {\hbox{const}}. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Erlandsson, K. (2010). Tracer Kinetic Modeling: Basics and Concepts. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics