Skip to main content

Quantitative SPECT Imaging

  • Chapter
  • First Online:

Abstract

The scintillation camera is essentially a device that measures 2D images of a radionuclide distribution in vivo by detecting emitted photons. Due to the construction of the collimator, events in the image coming from photons emitted at different source depths will be superimposed and the source depth will not be resolved. The solution is to obtain the 3D information by measuring projections in different views around the patient and use a reconstruction algorithm. The method is called Single-Photon Emission Computed Tomography (SPECT). If the activity is not redistributed over the time of measurement then the assumption in any reconstruction method is that there exists one unique activity distribution for which a corresponding photon emission will result in the projections that are acquired by the system. Then the goal of any reconstruction process is to determine this distribution in 3D as accurate as possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ljungberg M, Strand SE (1989) A Monte Carlo program simulating scintillation camera imaging. Comput Meth Prog Bio 29:257–272

    Article  CAS  Google Scholar 

  2. Ljungberg M (1998) The SIMIND Monte Carlo program. In: Ljungberg M, Strand SE, King MA (eds) Monte Carlo calculation in nuclear medicine: applications in diagnostic imaginged. IOP, Bristol/Philadelphia, pp 145–163

    Google Scholar 

  3. Segars WP, Lalush DS, Tsui BMW (1999) A realistic spline-based dynamic heart phantom. IEEE Trans Nucl Sci 46(3):503–506

    Article  Google Scholar 

  4. Segars WP (2001) Development of a new dynamic NURBS-based cardiac-torso (NCAT) phantom. PhD Thesis, Universiy of North Carolina

    Google Scholar 

  5. Berger MJ, Hubbell JH (1987) XCOM: Photon Cross Sections on a Personal Computer, NBSIR 87–3597, National Bureau of Standards (former name of NIST), Gaithersburg, MD, http://physics.nist.gov/PhysRefData/Xcom/Text/version.shtml

  6. Dewaraja YK, Ljungberg M, Koral KF (2000) Characterization of scatter and penetration using Monte Carlo simulation in 131-I imaging. J Nucl Med 41(1):123–130

    PubMed  CAS  Google Scholar 

  7. Dewaraja YK, Ljungberg M, Koral KF (2000) Accuracy of 131I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study. J Nucl Med 41(10):1760–1767

    PubMed  CAS  Google Scholar 

  8. Slomka PJ, Nishina H, Berman DS et al (2004) “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 45(7):1128–1134

    PubMed  Google Scholar 

  9. Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643

    Article  Google Scholar 

  10. Jaszczak RJ, Greer KL, Floyd CE et al (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25:893–900

    PubMed  CAS  Google Scholar 

  11. Ogawa K, Harata H, Ichihara T et al (1991) A practical method for position dependent compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 10:408–412

    Article  PubMed  CAS  Google Scholar 

  12. Axelsson B, Msaki P, Israelsson A (1984) Subtraction of compton-scattered photons in single-photon emission computed tomography. J Nucl Med 25:490–494

    PubMed  CAS  Google Scholar 

  13. Floyd CE, Jaszczak RJ, Greer KL et al (1985) Deconvolution of compton scatter in SPECT. J Nucl Med 26:403–408

    PubMed  Google Scholar 

  14. Siegel JA, Wu RK, Maurer AH (1985) The buildup factor: effect on scatter on absolute volume determination. J Nucl Med 26:390–394

    PubMed  CAS  Google Scholar 

  15. Meikle SR, Hutton BF, Bailey DL (1994) A transmission-dependent method for scatter correction in SPECT. J Nucl Med 35:360–367

    PubMed  CAS  Google Scholar 

  16. Willowson K, Bailey DL, Baldock C (2008) Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 53(12):3099–3112

    Article  PubMed  Google Scholar 

  17. Ljungberg M, Strand SE (1990) Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 31:1559–1567

    Google Scholar 

  18. Ljungberg M, Strand SE (1991) Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 32:1278–1284

    PubMed  CAS  Google Scholar 

  19. Frey EC, Tsui BMW (1997) A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. In: Conference records of the IEEE Medical Imaging Conference, Anaheim, 1996, pp 1082–1082

    Google Scholar 

  20. Song X, Frey EC, Wang WT et al (2004) Validation and evaluation of model-based crosstalk compensation method in simultaneous 99mTc Stress and 201Tl rest myocardial perfusion SPECT. IEEE Trans Nucl Sci 51(1):72–79

    Article  Google Scholar 

  21. Floyd CE, Jaszczak RJ, Coleman M (1985) Inverse Monte Carlo: a unified reconstruction algorithm for SPECT. IEEE Trans Nucl Sci 32:779–785

    Article  Google Scholar 

  22. Beekman FJ, de Jong HW, Slijpen ET (1999) Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 44(8):N183–N192

    Article  PubMed  CAS  Google Scholar 

  23. Xiao J, de Wit TC, Staelens SG et al (2006) Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 47(10):1662–1669

    PubMed  Google Scholar 

  24. Liu S, King MA, Brill AB (2008) Accelerated SPECT Monte Carlo simulation using multiple projection sampling and convolution-based forced detection. IEEE Trans Nucl Sci 55(1):560–568

    Article  PubMed  Google Scholar 

  25. Xiao J, de Wit TC, Zbijewski W et al (2007) Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT. J Nucl Med 48(4):637–644

    Article  PubMed  Google Scholar 

  26. Shaoying L, King MA, Brill AB et al (2008) Convolution-based forced detection Monte Carlo simulation incorporating septal penetration modeling. IEEE Trans Nucl Sci 55(3):967–974

    Article  Google Scholar 

  27. King MA, Schwinger RB, Doherty PW et al (1984) Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 25:1234–1240

    PubMed  CAS  Google Scholar 

  28. Lewitt RM, Edholm PR, Xia W (1989) Fourier method for correction of depth dependent collimator blurring. Proc SPIE 1092:232–243

    Article  Google Scholar 

  29. Xia W, Lewitt RM, Edholm PR (1995) Fourier correction for spatially variant collimator blurring in SPECT. IEEE Trans Med Imaging 14(1):100–115

    Article  PubMed  CAS  Google Scholar 

  30. Beekman FJ, Slijpen ET, de Jong HW et al (1999) Estimation of the depth-dependent component of the point spread function of SPECT. Med Phys 26(11):2311–2322

    Article  PubMed  CAS  Google Scholar 

  31. Borges-Neto S, Pagnanelli RA, Shaw LK et al (2007) Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 14(4):555–565

    Article  PubMed  Google Scholar 

  32. Zito F, Gilardi MC, Magnani P et al (1996) Single-photon emission tomographic quantification in spherical objects: effects of object size and background. Eur J Nucl Med Mol Imaging 23(3):263–271

    Article  CAS  Google Scholar 

  33. Koral KF, Dewaraja Y (1999) I-131 SPECT activity recovery coefficients with implicit or triple-energy-window scatter correction. Nucl Instrum Methods Phys Res Sect A 422(1–3):688–692

    Article  CAS  Google Scholar 

  34. Geworski L, Knoop BO, de Cabrejas ML et al (2000) Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med Mol Imaging 27(2):161–169

    Article  CAS  Google Scholar 

  35. Dewaraja YK, Wilderman SJ, Ljungberg M et al (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46(5):840–849

    PubMed  CAS  Google Scholar 

  36. Ljungberg M, Sjogreen K, Liu X et al (2002) A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for 131-I using Monte Carlo simulation. J Nucl Med 43(8):1101–1109

    PubMed  Google Scholar 

  37. He B, Du Y, Song X et al (2005) A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. Phys Med Biol 50(17):4169–4185

    Article  PubMed  CAS  Google Scholar 

  38. Da Silva AJ, Tang HR, Wong KH et al (2001) Absolute quantification of regional myocardial uptake of 99mTc-Sestamibi with SPECT: experimental validation in a Porcine model. J Nucl Med 42(5):772–779

    PubMed  Google Scholar 

  39. Yong D, Tsui BMW, Frey EC (2005) Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 24(8):969–976

    Article  Google Scholar 

  40. Boening G, Pretorius PH, King MA (2006) Study of relative quantification of Tc-99 m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Trans Nucl Sci 53 (3-part-2):1205–1212

    Google Scholar 

  41. Frey EC, Tsui BMW (1993) Modeling the scatter response function in inhomogeneous scattering media. In: Conference Records of the IEEE Medical Imaging Conference, pp 1–1

    Google Scholar 

  42. Loevinger R, Berman M (1976) A revised schema for calculation of the absorbed dose from biologically distributed radionuclides. MIRD Phamplet No. 1, Revised. Society of Nuclear Medicine, New York

    Google Scholar 

  43. He B, Wahl RL, Du Y et al (2008) Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning–Monte Carlo simulation studies. IEEE Trans Med Imaging 27(4):521–530

    Article  PubMed  CAS  Google Scholar 

  44. He B, Frey EC (2006) Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol 51(16):3967–3981

    Article  PubMed  CAS  Google Scholar 

  45. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37(3):538–546

    PubMed  CAS  Google Scholar 

  46. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027

    PubMed  Google Scholar 

  47. Fleming JS (1979) A technique for the absolute measurement of activity using a gamma camera and computer. Phys Med Biol 24(1):178–180

    Article  Google Scholar 

  48. Sjögreen K, Ljungberg M, Strand SE (2002) An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to 131I. J Nucl Med 43(7):972–982

    PubMed  Google Scholar 

  49. Berger MJ (1968) Energy deposition in water by photons from point isotropic sources: MIRD Pamphlet no. 2. J Nucl Med 9:15–25

    Google Scholar 

  50. Berger MJ (1971) Distribution of absorbed dose around point sources of electrons and beta particles in water and other media: MIRD Pamphlet no. 7. J Nucl Med 12:5–23

    CAS  Google Scholar 

  51. Kolbert KS, Sgouros G, Scott AM et al (1997) Implementation and evaluation of patient-specific three- dimensional internal dosimetry. J Nucl Med 38(2):301–308

    PubMed  CAS  Google Scholar 

  52. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36:861–920

    Article  PubMed  CAS  Google Scholar 

  53. Nelson WR, Hirayama H, Rogers DWO (1985) The EGS4 Code System. Stanford Linear Accelerator Center report SLAC-265

    Google Scholar 

  54. Briesemeister JF (1986) MCNP-A general Monte Carlo Code for Neutron and Photon Transport Version 3A, Los Alamos National Laboratory LA-7396-M. Online document at: http://mcnp-green.lanl.gov/index.html

  55. Jan S, Santin G, Strul D et al (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49(19):4543–4561

    Article  PubMed  CAS  Google Scholar 

  56. Minarik D, Sjögreen K, Ljungberg M (2005) A new method to obtain transmission images for planar whole-body activity quantification. Cancer Biother Radiopharm 20(1):72–76

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ljungberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ljungberg, M. (2010). Quantitative SPECT Imaging. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics