Skip to main content

Emission Tomography and Image Reconstruction

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2703 Accesses

Abstract

In the early days of nuclear medicine, measurement of radioactivity administered into a human body was simply acquired by placing a Geiger counter over the desired region of interest. Further progress was undertaken using a rectilinear scanner. The breakthrough, as mentioned in Chap. 10, came from the development of the gamma camera and the use of the scintillation crystal coupled to photomultiplier tubes (PMTs). To this end, there was no available tool to measure the spatial extent of tracer distribution in three-dimensional (3D) fashion, and all measurements were confined to two-dimensional (2D) planar imaging. The third dimension is important to fully depict radiopharmaceutical uptake, hence enabling the interpreting physician to make a confident decision. Another feature of 3D imaging is the ability to quantify tracer concentrations more accurately than with 2D imaging. Tracer uptake, residence time, and clearance rates are important dynamics of tracer biodistribution in diseased and healthy tissues, in which temporal sampling is particularly useful for studying tracer or organ kinetics. Adding the time dimension to 2D planar imaging is important in some scintigraphic studies, such as renal scintigraphy and planar equilibrium radionuclide angiocardiography (ERNA). In the former case, kidney function is studied through a time course of about half an hour, dividing the examination time into two phases (perfusion and function) such that the first minute is assigned to depict organ perfusion while the rest of the study is used to assess renal function. In planar ERNA, the time dimension is essential to make snapshots of different phases of the heart cycle through identification of the R-R signal during heart contraction. This helps to obtain valuable information about heart motion and to assess its functional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367

    PubMed  Google Scholar 

  2. Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, Miller RW, Song Y (2008) Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat 7(1):67–81

    PubMed  CAS  Google Scholar 

  3. Bracewell RN (1956) Strip integration in radioastronomy. J Phys 9:198–217

    Google Scholar 

  4. Beckmann EC (2006) CT scanning the early days. Br J Radiol 79(937):5–8

    Article  PubMed  CAS  Google Scholar 

  5. Jaszczak RJ (2006) The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol 51:R99–R115

    Article  PubMed  Google Scholar 

  6. Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances. SPIE. International Society for Optical Engineering, Bellingham

    Google Scholar 

  7. Zanzonico P (2008) Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med 49(7):1114–1131

    Article  PubMed  Google Scholar 

  8. Zeng G, Gullberg G (2000) Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans Med Imaging 19(5):548–555

    Article  PubMed  CAS  Google Scholar 

  9. Brooks RA, Di Chiro G (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21:689

    Article  PubMed  CAS  Google Scholar 

  10. Kinahan PE, Defrise M, Clackdoyle R (2004) Analytic image reconstruction methods. In: Wernick M, Aarsvold J (eds) Emission tomography: the fundamentals of PET and SPECT. Academic, San Diego

    Google Scholar 

  11. Matej S, Kazantsev IG (2006) Fourier-based reconstruction for Fully 3-D PET: optimization of interpolation parameters. IEEE Trans Med Imaging 25(7):845–854

    Article  PubMed  Google Scholar 

  12. Madsen MT, Park CH (1985) Enhancement of SPECT images by Fourier filtering the projection image set. J Nucl Med 26(4):395–402

    PubMed  CAS  Google Scholar 

  13. Wells RG, Farncombe T, Chang E, Nicholson RL (2004) Reducing bladder artifacts in clinical pelvic SPECT images. J Nucl Med 45(8):1309–1314

    PubMed  Google Scholar 

  14. Gilland DR, Tsui BM, McCartney WH, Perry JR, Berg J (1988) Determination of the optimum filter function for SPECT imaging. J Nucl Med 29(5):643–650

    PubMed  CAS  Google Scholar 

  15. Qi J, Leahy RM (2006) Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 51(15):R541–R578

    Article  PubMed  Google Scholar 

  16. van Velden FH, Kloet RW, van Berckel BN, Molthoff CF, Lammertsma AA, Boellaard R (2008) Gap filling strategies for 3-D-FBP reconstructions of high-resolution research tomography scans. IEEE Trans Med Imaging 27(7):934–942

    Article  PubMed  Google Scholar 

  17. Karp JS, Muehllehner G, Lewitt RM (1988) Constrained Fourier space method for compensation of missing data in emission computed tomography. IEEE Trans Med Imaging 7(1):21–25

    Article  PubMed  CAS  Google Scholar 

  18. Colsher JG (1980) Fully three-dimensional positron emission tomography. Phys Med Biol 25:103–115

    Article  PubMed  CAS  Google Scholar 

  19. Kinahan PE, Rogers JG (1990) Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci NS-36:964–968

    Google Scholar 

  20. Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28(11):1717–1724

    PubMed  CAS  Google Scholar 

  21. Lewitt RM, Muehllehner G, Karp JS (1994) Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 39:321–340

    Article  Google Scholar 

  22. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imaging MI-16:145–158

    Article  Google Scholar 

  23. Matej S, Karp JS, Lewitt RM, Becher AJ (1998) Performance of the Fourier rebinning algorithm for 3D PET with large acceptance angles. Phys Med Biol 43:787–797

    Article  PubMed  CAS  Google Scholar 

  24. Krzywinski M, Sossi V, Ruth TJ (1998) Comparison of FORE, OSEM and SAGE algorithms to 3DRP in 3D PET using phantom and human subject data. Nuclear Science Symposium, Conference Record. IEEE 1998 3:1546–1551

    Google Scholar 

  25. Defrise M, Casey ME, Michel C, Conti M (2005) Fourier rebinning of time-of-flight PET data. Phys Med Biol 50:2749–2763

    Article  PubMed  Google Scholar 

  26. Ben Bouallegue F, Crouzet F, Comtat C et al (2007) Exact and approximate Fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET. IEEE Trans Med Imaging 26:1001–1009

    Article  Google Scholar 

  27. Kinahan PE, Michel C, Defrise M, Townsend DW, Sibomana M, Lonneux M, Newport DF, Luketich JD (1996) Fast iterative image reconstruction of 3D PET data. In: IEEE nuclear science and medical imaging conference, Anaheim, pp 1918–1922

    Google Scholar 

  28. Lalush DS, Wernick MN (2004) Iterative image reconstruction. In: Wernick M, Aarsvold J (eds) Emission tomography: the fundamentals of PET and SPECT. Academic Press, San Diego

    Google Scholar 

  29. Loudos GK (2008) An efficient analytical calculation of probability matrix in 2D SPECT. Comput Med Imaging Graph 32(2):83–94

    Article  PubMed  Google Scholar 

  30. Qi J, Leahy R, Cherry S, Chatziioannou A, Farquhar T (1998) High-resolution 3-D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001–1013

    Article  PubMed  CAS  Google Scholar 

  31. Qi J, Huesman RH (2005) Effect of errors in the system matrix on maximum a posteriori image reconstruction. Phys Med Biol 50(14):3297–3312

    Article  PubMed  Google Scholar 

  32. Ortuno J, Pedro Guerra-Gutierrez P, Rubio J, Kontaxakis G, Santos A (2006) 3D-OSEM iterative image reconstruction for high-resolution PET using precalculated system matrix. Nucl Instrum Meth Phys Res A 569:440–444

    Article  CAS  Google Scholar 

  33. Byrne CL (1996) Block-iterative methods for image reconstruction from projections. IEEE Trans Imaging Process 5:792–794

    Article  CAS  Google Scholar 

  34. Kamphuis C, Beekman FJ, Van Rijk PP, Viergever MA (1998) Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 25:8–18

    Article  PubMed  CAS  Google Scholar 

  35. De Wit TC, Xiao JB, Beekman FJ (2005) Monte Carlo-based statistical SPECT reconstruction: influence of number of photon tracks. IEEE Trans Nucl Sci 52:1365–1369

    Article  Google Scholar 

  36. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8:306–316

    PubMed  CAS  Google Scholar 

  37. Snyder DL, Miller MI (1985) The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Trans Nucl Sci 32:3864–3872

    Article  Google Scholar 

  38. Snyder DL, Miller MI, Thomas LJ, Politte DG (1987) Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging 6(3):228–238

    Article  PubMed  CAS  Google Scholar 

  39. Hudson H, Larkin R (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging MI-13:601–609

    Article  Google Scholar 

  40. Seret A, Boellaard R, van der Weerdt A (2004) Number of iterations when comparing MLEM/OSEM with FBP. J Nucl Med 45(12):2125–2126

    PubMed  Google Scholar 

  41. Dickson JC, Tossici-Bolt L, Sera T, Erlnadsson K, Tatsch K, Hutton B (2010) The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 37(1):23–35

    Article  PubMed  Google Scholar 

  42. van der Weerdt AP, Boellaard R, Knaapen P, Visser CA, Lammertsma AA, Visser FC (2004) Postinjection transmission scanning in myocardial 18F-FDG PET studies using both filtered backprojection and iterative reconstruction. J Nucl Med 45:169–175

    PubMed  Google Scholar 

  43. Hutton B, Nuyts J, Zaidi H (2004) Iterative image reconstruction methods. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Kluwer/Plenum, New York

    Google Scholar 

  44. Panin VY, Kehren F, Michel C, Casey M (2006) Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 25:907–921

    Article  PubMed  Google Scholar 

  45. Kadrmas DJ (2004) LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 49(20):4731–4744

    Article  PubMed  Google Scholar 

  46. Comtat C, Kinahan PE, Defrise M, Michel C, Townsend DW (1998) Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 45:1083–1089

    Article  Google Scholar 

  47. Levitan E, Herman GT (1987) A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans Med Imaging 6:185–192

    Article  PubMed  CAS  Google Scholar 

  48. Frese T, Rouze NC, Bouman CA, Sauer K, Hutchins GD (2003) Quantitative comparison of FBP, EM, and Bayesian reconstruction algorithms for the IndyPET scanner. IEEE Trans Med Imaging 22(2):258–276

    Article  PubMed  Google Scholar 

  49. Qi J (2003) Theoretical evaluation of the detectability of random lesions in Bayesian emission reconstruction. Inf Process Med Imaging 18:354–365

    Article  PubMed  Google Scholar 

  50. Qi J (2004) Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object variability. IEEE Trans Med Imaging 23(3):321–329

    Article  PubMed  Google Scholar 

  51. Fessler JA (1994) Penalized weighted least squares image reconstruction for PET. IEEE Trans Med Imaging 13:290–300

    Article  PubMed  CAS  Google Scholar 

  52. Fessler JA, Rogers WL (1996) Spatial resolution properties of penalized-likelihood image reconstruction: spatial-invariant tomographs. IEEE Trans Image Process 9:1346–1358

    Article  Google Scholar 

  53. Lehovich A, Gifford HC, Schneider PB, King MA (2007) Choosing anatomical-prior strength for MAP SPECT reconstruction to maximize lesion detectability. IEEE Nucl Sci Symp Conf Rec 6(1):4222–4225

    Google Scholar 

  54. Baete K, Nuyts J, Van Laere K, Van Paesschen W, Ceyssens S, De Ceuninck L, Gheysens O, Kelles A, Van den Eynden J, Suetens P, Dupont P (2004) Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 23(1):305–317

    Article  PubMed  Google Scholar 

  55. Alessio AM, Kinahan PE (2006) Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys 33(11):4095–4103

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.M. (2010). Emission Tomography and Image Reconstruction. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics