Skip to main content

Positron Emission Tomography (PET): Basic Principles

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2895 Accesses

Abstract

Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are three-dimensional (3D) techniques provided by nuclear imaging to functionally map radiotracer uptake distributed in the human body. SPECT systems have been described previously; PET imaging is the main topic of the present chapter. The radiopharmaceuticals of PET provide more insights into the metabolic and molecular processes of the disease. This in turn has made PET a molecular imaging technique that examines biochemical processes that take place at the molecular level [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phelps MR (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41(4):661–681

    PubMed  CAS  Google Scholar 

  2. Tai YF, Piccini P (2004) Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry 75:669–676

    Article  PubMed  CAS  Google Scholar 

  3. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  4. Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):360–385

    Article  PubMed  Google Scholar 

  5. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK (2002) PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 225:575–581

    Article  PubMed  Google Scholar 

  6. Zaidi H, Mawlawi O, Orton CG (2007) Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 34:1525–1528

    Article  PubMed  Google Scholar 

  7. Podgorsak EB (2005) Radiation physics for medical physicists. Springer, Berlin

    Google Scholar 

  8. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799, Corrigendum: Phys Med Biol 2000; 45:559

    Article  PubMed  CAS  Google Scholar 

  9. Sanchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51

    Article  PubMed  Google Scholar 

  10. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine. Saunders, Philadelphia

    Google Scholar 

  11. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27–33

    Article  CAS  Google Scholar 

  12. Budinger TF (1998) PET instrumentation: what are the limits? Semin Nucl Med 28(3):247–267

    Article  PubMed  CAS  Google Scholar 

  13. Ruhlmann J, Oehr P, Biersack H-J (2000) PET in oncology. Springer, Berlin

    Google Scholar 

  14. Peschina W, Conca A, König P, Fritzsche H, Beraus W (2001) Low frequency rTMS as an add-on antidepressive strategy: heterogeneous impact on 99mTc-HMPAO and 18 F-FDG uptake as measured simultaneously with the double isotope SPECT technique. Pilot study. Nucl Med Commun 22(8):867–873

    Article  PubMed  CAS  Google Scholar 

  15. Sandler MP, Videlefsky S, Delbeke D, Patton JA, Meyerowitz C, Martin WH, Ohana I (1995) Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol 26:870–878

    Article  PubMed  CAS  Google Scholar 

  16. Laymon CM, Turkington TG (2006) Characterization of septal penetration in 511 keV SPECT. Nucl Med Commun 27(11):901–909

    Article  PubMed  Google Scholar 

  17. Turkington TG (2001) Introduction to PET instrumentation. J Nucl Med Technol 29(1):4–11, Erratum: J Nucl Med Technol 2002, 30(2):63

    PubMed  CAS  Google Scholar 

  18. Lonneux M, Delval D, Bausart R, Moens R, Willockx R, Van Mael P, Declerck P, Jamar F, Zreik H, Pauwels S (1998) Can dual-headed 18F-FDG SPET imaging reliably supersede PET in clinical oncology? A comparative study in lung and gastrointestinal tract cancer. Nucl Med Commun 19(11):1047–1054

    Article  PubMed  CAS  Google Scholar 

  19. Bergmann H, Dobrozemsky G, Minear G, Nicoletti R, Samal M (2005) An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality. Phys Med Biol 50(10):2193–2207

    Article  PubMed  Google Scholar 

  20. Kadrmas DJ, Christian PE (2002) Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med 43(11):1545–1554

    PubMed  Google Scholar 

  21. Bailey DL, Young H, Bloomfield PM et al (1997) ECAT ART: a continuously rotating PET camera-performance characteristics, initial clinical studies and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15

    Article  PubMed  CAS  Google Scholar 

  22. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  23. Karp JS, Muehllehner G, Mankoff DA et al (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:617–627

    PubMed  CAS  Google Scholar 

  24. Surti S, Karp JS (2004) Imaging characteristics of a 3-dimensional GSO whole-body PET camera. J Nucl Med 45:1040–1049

    PubMed  CAS  Google Scholar 

  25. Adam LE, Karp JS, Daube-Whitherspoon ME, Smith RJ (2001) Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 42:1821–1830

    PubMed  CAS  Google Scholar 

  26. Karp JS, Surti S, Daube-Witherspoon ME et al (2003) Performance of a brain PET camera based on Anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 44:1340–1349

    PubMed  CAS  Google Scholar 

  27. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480

    PubMed  Google Scholar 

  28. Surti S, Karp JS, Freifelder R, Liu F (2000) Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci 47:1030–1036

    Article  CAS  Google Scholar 

  29. de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA (2007) Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 52:1505–1526

    Article  PubMed  Google Scholar 

  30. Phelps ME (2002) Molecular imaging with positron emission tomography. Annu Rev Nucl Part Sci 52:303–338

    Article  CAS  Google Scholar 

  31. Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53(17):R287–R317

    Article  PubMed  Google Scholar 

  32. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New Work

    Google Scholar 

  33. Humm JL, Rosenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30(11):1574–1597

    Article  PubMed  Google Scholar 

  34. Melcher CL (2000) Scintillation crystals for PET. J Nucl Med 41:1051–1055

    PubMed  CAS  Google Scholar 

  35. van Eijk CW (2002) Inorganic scintillators in medical imaging. Phys Med Biol 47(8):R85–R106

    Article  PubMed  Google Scholar 

  36. Surti S, Karp JS (2005) A count-rate model for PET scanners using pixelated Anger-logic detectors with different scintillators. Phys Med Biol 50(23):5697–5715

    Article  PubMed  CAS  Google Scholar 

  37. Karp JS (2002) Is LSO the future of PET? against. Eur J Nucl Med Mol Imaging 29:1525–1528

    Article  PubMed  Google Scholar 

  38. Teräs M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J (2007) Performance of the new generation of whole-body PET/CT scanners: discovery STE and discovery VCT. Eur J Nucl Med Mol Imaging 34(10):1683–1692

    Article  PubMed  Google Scholar 

  39. Martínez MJ, Bercier Y, Schwaiger M, Ziegler SI (2006) PET/CT Biograph Sensation 16. Performance improvement using faster electronics. Nuklearmedizin 45(3):126–133

    PubMed  Google Scholar 

  40. Bloomfield PM et al (1995) The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol 40:1105–1126

    Article  PubMed  CAS  Google Scholar 

  41. Yamamoto S, Kuroda K, Senda M (2003) Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci 50:1683–1685

    Article  CAS  Google Scholar 

  42. Cherry S (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) – advances in PET imaging technology. J Nucl Med 47(11):1735–1745

    PubMed  CAS  Google Scholar 

  43. Nutt R (2002) For: is LSO the future of PET? Eur J Nucl Med Mol Imaging 29(11):1523–1525

    Article  PubMed  Google Scholar 

  44. Wienhard K et al (2002) The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 49:104–110

    Article  Google Scholar 

  45. Doshi NK, Shao Y, Silverman RW, Cherry SR (2000) Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys 27(7):1535–1543

    Article  PubMed  CAS  Google Scholar 

  46. Cherry SR et al (1997) MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44:1161–1166

    Article  CAS  Google Scholar 

  47. Lonneux M, Borbath I, Bol A, Coppens A, Sibomana M, Bausart R, Defrise M, Pauwels S, Michel C (1999) Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 26(6):591–598

    Article  PubMed  CAS  Google Scholar 

  48. Zanzonico P (2004) Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med 34:87–111

    Article  PubMed  Google Scholar 

  49. Casey ME, Nutt R (1986) A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33(1):460–463

    Article  Google Scholar 

  50. Tai YC, Laforest R (2005) Instrumentation aspects of animal PET. Annu Rev Biomed Eng 7:255–285

    Article  PubMed  CAS  Google Scholar 

  51. Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB (2004) Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 49(18):4305–4319

    Article  PubMed  CAS  Google Scholar 

  52. Surti S, Karp JS, Kinahan PE (2004) PET instrumentation. Radiol Clin North Am 42(6):1003–1016

    Article  PubMed  Google Scholar 

  53. Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, Schmitz N, Schwaiger M (2001) A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 28(2):136–143

    Article  PubMed  CAS  Google Scholar 

  54. Muehllehner G, Karp JS (2006) Positron emission tomography. Phys Med Biol 51(13):R117–R137, 2006

    Article  PubMed  CAS  Google Scholar 

  55. Wong W, Uribe J, Hicks K, Hu G (1995) An analog decoding BGO block detector using circular photomultipliers. IEEE Trans Nucl Sci 42:1095–1101

    Article  Google Scholar 

  56. Wong WH, Li H, Uribe J, Baghaei H, Wang Y, Yokoyama S (2001) Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method. J Nucl Med 42(4):624–632

    PubMed  CAS  Google Scholar 

  57. Liu J, Li H, Wang Y, Kim S, Zhang Y, Liu S, Baghaei H, Ramirez R, Wong W (2007) Real time digital implementation of the high-yield-pileup-event-recover (HYPER) method. IEEE Nucl Sci Symp Conf Rec 4230–4232

    Google Scholar 

  58. Bailey DL (2006) Data acquisition and performance characterization in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London

    Google Scholar 

  59. Meikle SR, Badawi RD (2006) Quantitative techniques in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London

    Google Scholar 

  60. Lewellen T, Karp J (2004) PET systems. In: Wernick M, Aarsvold J (eds) Emission tomography: the fundamentals of PET and SPECT. Elsevier Academic, San Diego

    Google Scholar 

  61. Badawi RD, Miller MP, Bailey DL, Marsden PK (1999) Randoms variance reduction in 3D PET. Phys Med Biol 44(4):941–954

    Article  PubMed  CAS  Google Scholar 

  62. Wong WH (1988) PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med 29(3):338–347

    PubMed  CAS  Google Scholar 

  63. Schmitz RE, Kinahan PE, Harrison RL, Stearns CW, Lewellen TK (2005) Simulation of count rate performance for a PET scanner with different degrees of partial collimation. IEEE Nucl Sci Symp Conf Rec 23–29 Oct. 2005, 2506–2509

    Google Scholar 

  64. Schmand M et al (1998) Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans Nucl Sci 45:3000–3006

    Article  Google Scholar 

  65. Townsend DW (2008) Positron emission tomography/computed tomography. Semin Nucl Med 38(3):152–166, Review

    Article  PubMed  Google Scholar 

  66. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39

    Article  PubMed  CAS  Google Scholar 

  67. Habte F, Foudray AMK, Olcott PD et al (2007) Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography. Phys Med Biol 52:3759–3772

    Article  Google Scholar 

  68. Conti M, Bendriem B, Casey M, Eriksson L, Jackoby B, Jones WF, Michel C (2005) Performance of a high sensitivity PET scanner based on LSO panel detectors. Nucl Sci Symp Conf Rec 5:2501–2505

    Google Scholar 

  69. Dhawan V, Kazumata K, Robeson W, Belakhlef A, Margouleff C, Chaly T, Nakamura T, Dahl R, Margouleff D, Eidelberg D (1998) Quantitative brain PET. Comparison of 2D and 3D acquisitions on the GE advance scanner. Clin Positron Imaging 1:135–144

    Article  PubMed  Google Scholar 

  70. Bailey DL, Miller MP, Spinks TJ, Bloomfield PM, Livieratos L, Young HE, Jones T (1998) Experience with fully 3D PET and implications for future high-resolution 3D tomographs. Phys Med Biol 43(4):777–786

    Article  PubMed  CAS  Google Scholar 

  71. Everaert H, Vanhove C, Lahoutte T, Muylle K, Caveliers V, Bossuyt A, Franken PR (2003) Optimal dose of 18F-FDG required for whole-body PET using an LSO PET camera. Eur J Nucl Med Mol Imaging 30(12):1615–1619

    Article  PubMed  CAS  Google Scholar 

  72. Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET scanner sensitivity: relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37:783–788

    Article  Google Scholar 

  73. Daube-Witherspoon ME, Karp JS, Casey ME et al (2002) PET performance measurements using the NEMA NU 2–2001 standard. J Nucl Med 43:1398–1409

    PubMed  Google Scholar 

  74. Badawi RD, Dahlbom M (2005) NEC: some coincidences are more equivalent than others. J Nucl Med 46(11):1767–1768

    PubMed  Google Scholar 

  75. Lartizien C, Comtat C, Kinahan PE et al (2002) Optimization of the injected dose based on noise equivalent count rates for 2- and 3-dimensional whole-body PET. J Nucl Med 43:1268–1278

    PubMed  Google Scholar 

  76. Moses WW (2002) Advantages of improved timing accuracy in PET cameras using LSO scintillator. IEEE Nucl Sci Symp Conf Rec 3:1670–1675

    Google Scholar 

  77. Budinger TF (1983) Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 24:73–78

    PubMed  CAS  Google Scholar 

  78. Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci NS-50:1325–1330

    Article  Google Scholar 

  79. Conti M (2009) State of the art and challenges of time-of-flight. PET Phys Med 25(1):1–11

    Article  Google Scholar 

  80. Kyba CCM, Wiener RI, Newcomer FM, Perkins AE, Kulp RR, Werner ME, Surti S, Dressnandt N, Van Berg R, Karp JS (2008) Evaluation of local PMT triggering electronics for a TOF-PET scanner. IEEE Nuclear Science Symposium and Medical Imaging Conf. Record (Dresden, Germany, 2008) Sellin P (ed)

    Google Scholar 

  81. Daube-Witherspoon ME, Surti S, Perkins A, Kyba CC, Wiener R, Werner ME, Kulp R, Karp JS (2010) The imaging performance of a LaBr3-based PET scanner. Phys Med Biol 55(1):45–64

    Article  PubMed  CAS  Google Scholar 

  82. Karp JS, Surti S, Dube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 49:462–470

    Article  PubMed  Google Scholar 

  83. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29(3):193–207

    Article  PubMed  Google Scholar 

  84. Stickel JR, Qi J, Cherry SR (2007) Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications. J Nucl Med 48:115–121

    PubMed  Google Scholar 

  85. Stickel JR, Cherry SR (2005) High-resolution PET detector design: modeling components of intrinsic spatial resolution. Phys Med Biol 50:179–195

    Article  PubMed  Google Scholar 

  86. Palmer MR, Zhu X, Parker JA (2005) Modeling and simulation of positron range effects for high resolution PET imaging. IEEE Trans Nucl Sci 52:1391–1395

    Article  Google Scholar 

  87. Ruangma A, Bai B, Lewis JS, Sun X, Michael JW, Leahy R, Laforest R (2006) Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceutical labeled with three Cu radionuclides. Nucl Med Biol 33:217–226

    Article  PubMed  CAS  Google Scholar 

  88. Derenzo SE (1986) Mathematical removal of positron range blurring in high resolution tomography. IEEE Trans Nucl Sci 33(1):565–569

    Article  Google Scholar 

  89. Fu L, Qi J (2010) A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range. Med Phys 37(2):704–713

    Article  PubMed  Google Scholar 

  90. Levin CS, Zaidi H (2007) Current trends in preclinical PET system design. PET Clin 2:125–160

    Article  Google Scholar 

  91. Yang Y, Wu Y, Qi J, St James S, Du H, Dokhale PA, Shah KS, Farrell R, Cherry SR (40) A prototype PET scanner with DOI-encoding detectors. J Nucl Med 49(7):1132

    Article  Google Scholar 

  92. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900

    PubMed  Google Scholar 

  93. Fahey FH (2002) Data acquisition in PET imaging. J Nucl Med Technol 30(2):39–49

    PubMed  Google Scholar 

  94. Qi J, Leahy RM (2006) Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 51(15):R541–R578

    Article  PubMed  Google Scholar 

  95. Links JM, Leal JP, Mueller-Gaertner HW, Wagner HN Jr (1992) Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med 19(11):925–932

    Article  PubMed  CAS  Google Scholar 

  96. Panin VY, Kehren F, Michel C, Casey M (2006) Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 25:907–921

    Article  PubMed  Google Scholar 

  97. Varrone A, Sjöholm N, Eriksson L, Gulyás B, Halldin C, Farde L (2009) Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 36(10):1639–1650

    Article  PubMed  Google Scholar 

  98. Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I et al (2008) Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med 49:1000–1008

    Article  PubMed  Google Scholar 

  99. Rahmim A, Tang J, Lodge MA, Lashkari S, Ay MR, Lautamäki R, Tsui BM, Bengel FM (2008) Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging. Phys Med Biol 53(21):5947–5965

    Article  PubMed  CAS  Google Scholar 

  100. Aston JA, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN (2002) Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab 22(8):1019–1034

    Article  PubMed  Google Scholar 

  101. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48(6):932–945

    Article  PubMed  Google Scholar 

  102. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45(9):1519–1527

    PubMed  Google Scholar 

  103. Mourik JE, Lubberink M, van Velden FH, Kloet RW, van Berckel BN, Lammertsma AA, Boellaard R (2010) In vivo validation of reconstruction-based resolution recovery for human brain studies. J Cereb Blood Flow Metab 30(2):381–389

    Article  PubMed  Google Scholar 

  104. Ollinger JM (1995) Detector efficiency and compton scatter in fully 3D PET. IEEE Trans Nucl Sci 42:1168–1173

    Article  Google Scholar 

  105. Badawi RD, Marsden PK (1999) Self-normalization of emission data in 3D PET. IEEE Trans Nucl Sci 46:709–712

    Article  Google Scholar 

  106. Zhang Y, Li H, Baghaei H, Liu S, Ramirez R, An A, Wang C, Wong W (2008) A new self-normalization method for PET. J Nucl Med 49(Suppl 1):62

    Google Scholar 

  107. Bai B, Li Q, Holdsworth CH, Asma E, Tai YC, Chatziioannou A, Leahy RM (2002) Model-based normalization for iterative 3D PET image reconstruction. Phys Med Biol 47(15):2773–2784

    Article  PubMed  CAS  Google Scholar 

  108. Hermansen F, Spinks TJ, Camici PG, Lammertsma AA (1997) Calculation of single detector efficiencies and extension of the normalization sinogram in PET. Phys Med Biol 42:1143–1154

    Article  PubMed  CAS  Google Scholar 

  109. Ishikawa A, Kitamura K, Mizuta T, Tanaka K, Amano M (2004) Self normalization for continuous 3D whole body emission data in 3D PET. IEEE Trans Nucl Sci 6:3634–3637

    Google Scholar 

  110. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M (1989) PET system calibrations and corrections for quantitative and spatially accurate images IEEE Trans Nucl Sci 36:1108–1112

    Article  Google Scholar 

  111. Defrise M, Townsend D, Bailey D, Geissbuhler A, Michel C, Jones T (1991) A normalization technique for 3D. PET data. Phys Med Biol 36:939–952

    Article  PubMed  CAS  Google Scholar 

  112. Casey ME, Gadagkar H, Newport D (1995) A component based method for normalization in volume PET. In: Proceedings of the 3rd International Meeting Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Aix-les-Bains, France, pp 67–71

    Google Scholar 

  113. Kinahan PE, Townsend DW, Bailey DL, Sashin D, Jadali F, Mintun MA (1995) Efficiency normalization technique for 3D PET data. In: Proceeding of the IEEE Nuclear Science Symposium and Medical Imaging Conference Recording, vol 2, pp 21–28

    Google Scholar 

  114. Badawi RD, Marsden PK (1999) Developments in component-based normalization for 3D PET. Phys Med Biol 44:571–594

    Article  PubMed  CAS  Google Scholar 

  115. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK (2000) A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol 45:3253–3266

    Article  PubMed  CAS  Google Scholar 

  116. Germano G, Hoffman EJ (1990) A study of data loss and mispositioning due to pileup in 2-D detectors in PET. IEEE Trans Nucl Sci 37(2):671–675

    Article  Google Scholar 

  117. Bailey DL, Meikle SR, Jones T (1997) Effective sensitivity in 3D PET: the impact of detector dead time on 3D system performance. IEEE Trans Nucl Sci NS–44:1180–1185

    Article  Google Scholar 

  118. Spinks TJ, Bloomfield PM (2002) A comparison of count rate performance for 15O-water blood flow studies in the CTI HR + and Accel tomographs in 3D mode. Nuclear Science Symposium Conference Record, 2002 IEEE vol 3, 10–16 November 2002, pp 1457–1460

    Google Scholar 

  119. Moisan C, Rogers JG, Douglas JL (1997) A count-rate model for PET and its application to an LSO HR plus scanner. IEEE Trans Nucl Sci 44:1219–1224

    Article  CAS  Google Scholar 

  120. Wong WH, Li H (1998) A scintillation detector signal processing technique with active pileup prevention for extending scintillation count rates. IEEE Trans Nucl Sci 45(3):838–842

    Article  CAS  Google Scholar 

  121. Blankespoor SC, Xu X, Kaiki BKJK, Tang HR, Cann CE et al (1996) Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 43:2263–2274

    Article  Google Scholar 

  122. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053

    Article  PubMed  CAS  Google Scholar 

  123. Burger C, Goerres G, Schoenes S, Buck A, Lonn AHR, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927

    Article  PubMed  CAS  Google Scholar 

  124. Bénard F, Smith RJ, Hustinx R, Karp JS, Alavi A (1999) Clinical evaluation of processing techniques for attenuation correction with 137Cs in whole-body PET imaging. J Nucl Med 40(8):1257–1263

    PubMed  Google Scholar 

  125. Bai C, Shao L, Da Silva AJ et al (2003) A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 50:1510–1515

    Article  Google Scholar 

  126. Seo Y, Mari C, Hasegawa BH (2008) Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 38(3):177–198

    Article  PubMed  Google Scholar 

  127. Thompson CJ (1993) The problem of scatter correction in positron volume imaging. IEEE Trans Med Imaging MI-12:124–132

    Article  Google Scholar 

  128. Lercher MJ, Wienhard K (1994) Scatter correction in 3D PET. IEEE Trans Med Imaging 13:649–657

    Article  PubMed  CAS  Google Scholar 

  129. Adam L-E, Belleman ME, Brix G, Lorenz WJ (1996) Monte Carlo based analysis of PET scatter components. J Nucl Med 37:2024–2029

    PubMed  CAS  Google Scholar 

  130. Zaidi H, Koral KF (2004) Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31(5):761–782

    Article  PubMed  Google Scholar 

  131. Bailey DL (1998) Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW (eds) The theory and practice of 3D PET. Kluwer Academic, Dordrecht, pp 55–109

    Google Scholar 

  132. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41:2757–2774

    Article  PubMed  CAS  Google Scholar 

  133. Bentourkia M, Lecomte R (1999) Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 18:66–73

    Article  PubMed  CAS  Google Scholar 

  134. Bailey DL, Meikle SR (1994) A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39:411–424

    Article  PubMed  CAS  Google Scholar 

  135. McKee BA, Gurvey AT, Harvey PJ, Howse DC (1992) A deconvolution scatter correction for a 3-D PET system. IEEE Trans Med Imaging 11(4):560–569

    Article  PubMed  CAS  Google Scholar 

  136. Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7(1):42–50

    Article  PubMed  Google Scholar 

  137. Lubberink M, Kosugi T, Schneider H, Ohba H, Bergström M (2004) Non-stationary convolution subtraction scatter correction with a dual-exponential scatter kernel for the Hamamatsu SHR-7700 animal PET scanner. Phys Med Biol 49(5):833–842

    Article  PubMed  Google Scholar 

  138. Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:153–176

    Article  PubMed  CAS  Google Scholar 

  139. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594

    Article  Google Scholar 

  140. Watson CC, Casey ME, Michel C, Bendriem B (2004) Advances in scatter correction for 3D PET/CT. IEEE Nucl Sci Symp Conf Rec 5:3008–3012

    Google Scholar 

  141. Watson C (2007) Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Trans Nucl Sci 54(5):1679–1686

    Article  Google Scholar 

  142. Lecomte R (2009) Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85

    Article  PubMed  Google Scholar 

  143. Jansen FP, Vanderheyden JL (2007) Nucl Med Biol 34:733–735

    Article  PubMed  CAS  Google Scholar 

  144. Moses WW, Derenzo SE (1996) Proceedings of SCINT ’95 (Edited by P. Dorenbos and C. W. E. v. Eijk), Delft, The Netherlands, pp. 9–16. (LBNL-37720). With permission from William Moses, Lawrence Berkeley Lab, USA).

    Google Scholar 

  145. Melcher CL, Schweitzer JS (1992) Ceruim-doped lutetium orthosilicate: A fast, efficient new scintillator. IEEE Trans Nucl Sci 39:502–505

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.M. (2010). Positron Emission Tomography (PET): Basic Principles. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics