Skip to main content

Dichotomic Search Protocols for Constrained Optimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

Abstract

We devise a theoretical model for dichotomic search algorithms for constrained optimization. We show that, within our model, a certain way of choosing the breaking point minimizes both expected as well as worst case performance in a skewed binary search. Furthermore, we show that our protocol is optimal in the expected and in the worst case. Experimental results illustrate performance gains when our protocols are used within the search strategy by Streeter and Smith.

This work was supported by the National Science Foundation through the Career: Cornflower Project (award number 0644113). We would like to express our thanks to three anonymous reviewers for their helpful comments as well as John Hughes, Anna Lysyanskaya, Claire Mathieu, Steven Smith, and Mathew Streeter for supporting this work and some very insightful discussions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodal, G.S., Moruz, G.: Skewed Binary Search Trees. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 708–719. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Crawford, J.A., Auton, L.D.: Experimental Results on the Cross-Over Point in Random 3-SAT. Artificial Intelligence 81, 31–57 (1996)

    Article  MathSciNet  Google Scholar 

  3. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry Breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Ferré, S., King, R.D.: A dichotomic search algorithm for mining and learning in domain-specific logics. Fundamenta Informaticae 66(1–2), 1–32 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Focacci, F., Lodi, A., Milano, M.: Cost-Based Domain Filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)

    Google Scholar 

  6. Focacci, F., Milano, M.: Global Cut Framework for Removing Symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Automated Reasoning 24(1–2), 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harvey, W.: Symmetry Breaking and the Social Golfer Problem. In: SymCon. (2001)

    Google Scholar 

  9. Hogg, T., Huberman, B.A., Williams, C.P.: Phase Transitions and Complexity. Artificial Intelligence 81 (1996)

    Google Scholar 

  10. Jussien, N., Lhomme, O.: Dynamic Domain Splitting for Numeric CSPs. In: ECAI, pp. 224–228 (1998)

    Google Scholar 

  11. Kirkpatrick, S., Selman, B.: Critical Behavior in the Satisfiability of Random Boolean Expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  12. Leong, G.T.: Constraint Programming for the Traveling Tournament Problem. Project Thesis, National University of Singapore (2003)

    Google Scholar 

  13. Lustig, I., Puget, J.-F.: Constraint Programming. Encyclopedia of Operations Research and Management Science, 136–140 (2001)

    Google Scholar 

  14. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400, 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  15. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Annual ACM Symposium on Theory of Computing, pp. 137–142 (1972)

    Google Scholar 

  16. Smith, B.: Reducing Symmetry in a Combinatorial Design Problem. In: CPAIOR, pp. 351–360 (2001)

    Google Scholar 

  17. Streeter, M., Smith, S.F.: Using Decision Procedures Efficiently for Optimization. In: ICAPS, pp. 312–319 (2007)

    Google Scholar 

  18. Wojtaszek, D., Chinneck, J.W.: Faster MIP Solutions via New Node Selection Rules. In: INFORMS (2007)

    Google Scholar 

  19. Wong, C.K., Nievergelt, J.: Upper Bounds for the Total Path Length of Binary Trees. Journal of the ACM 20(1), 1–6 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, H.: Specifying Latin Square Problems in Propositional Logic. In: Automated Reasoning and Its Applications. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sellmann, M., Kadioglu, S. (2008). Dichotomic Search Protocols for Constrained Optimization. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics