Skip to main content

A Branch and Bound Algorithm for Numerical MAX-CSP

  • Conference paper
Principles and Practice of Constraint Programming (CP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

  • 1246 Accesses

Abstract

The Constraint Satisfaction Problem (CSP) framework allows users to define problems in a declarative way, quite independently from the solving process. However, when the problem is over-constrained, the answer “no solution” is generally unsatisfactory. A Max-CSP \(\mathcal{P}_m = \langle V, \textbf{D}, C \rangle\) is a triple defining a constraint problem whose solutions maximise constraint satisfaction. In this paper, we focus on numerical CSPs, which are defined on real variables represented as floating point intervals and which constraints are numerical relations defined in extension. Solving such a problem (i.e., exactly characterizing its solution set) is generally undecidable and thus consists in providing approximations. We propose a branch and bound algorithm that computes under and over approximations of its solution set and determines the maximum number of satisfied constraints. The technique is applied on three numeric applications and provides promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petit, T., Régin, J.C., Bessière, C.: Range-based algorithm for max-csp. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 280–294. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Google Scholar 

  3. Neumaier, A.: Interval Methods for Systems of Equations (1990)

    Google Scholar 

  4. Hayes, B.: A Lucid Interval. American Scientist 91(6), 484–488 (2003)

    Google Scholar 

  5. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  6. Lhomme, O.: Consistency techniques for numeric csps. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 232–238 (1993)

    Google Scholar 

  7. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benhamou, F., McAllester, D., van Hentenryck, P.: Clp(intervals) revisited. In: ILPS 1994, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  9. Mackworth, A.K.: Consistency in networks of relations. AI 8(1), 99–118 (1977)

    MATH  Google Scholar 

  10. Collavizza, H., Delobel, F., Rueher, M.: Extending Consistent Domains of Numeric CSP. In: Proceedings of IJCAI 1999 (1999)

    Google Scholar 

  11. Benhamou, F., Goualard, F., Languenou, E., Christie, M.: Interval Constraint Solving for Camera Control and Motion Planning. ACM Trans. Comput. Logic 5(4), 732–767 (2004)

    Article  MathSciNet  Google Scholar 

  12. Normand, J.M.: Placement de caméra en environnements virtuels. PhD thesis, Université de Nantes (2008)

    Google Scholar 

  13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. AI 58(1-3), 161–205 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Wallace, R.J.: Analysis of heuristic methods for partial constraint satisfaction problems. In: Principles and Practice of Constraint Programming, pp. 482–496 (1996)

    Google Scholar 

  15. Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Resende, M.G.C.: Global optimization by continuous grasp. Optimization Letters 1, 201–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaulin, L., Walter, E.: Guaranteed tuning, with application to robust control and motion planning. Automatica 32(8), 1217–1221 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dongarra, J.: Performance of various computers using standard linear equations software. Technical Report CS-89-85, University of Tennessee (2007)

    Google Scholar 

  18. Christie, M., Normand, J.M., Truchet, C.: Computing inner approximations of numerical maxcsp. In: IntCP 2006 (2006)

    Google Scholar 

  19. Delanoue, N., Jaulin, L., Cottenceau, B.: Counting the number of connected components of a set and its application to robotics. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 93–101. Springer, Heidelberg (2006)

    Google Scholar 

  20. Drezner, Z., Hamacher, H. (eds.): Facility Location. Applications and Theory. Springer, New-York (2002)

    MATH  Google Scholar 

  21. Jaulin, L., Walter, E.: Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis. Math. Comput. Simul. 35(2), 123–137 (1993)

    Article  MathSciNet  Google Scholar 

  22. Milanese, M., Vicino, A.: Estimation theory for nonlinear models and set membership uncertainty. Automatica 27(2), 403–408 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. Lisp Symb. Comput. 5(3), 223–270 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Normand, JM., Goldsztejn, A., Christie, M., Benhamou, F. (2008). A Branch and Bound Algorithm for Numerical MAX-CSP. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics