Skip to main content

A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions

  • Conference paper
Principles and Practice of Constraint Programming (CP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

Abstract

When numerical CSPs are used to solve systems of n equations with n variables, the interval Newton operator plays a key role: It acts like a global constraint, hence achieving a powerful contraction, and proves rigorously the existence of solutions. However, both advantages cannot be used for under-constrained systems of equations, which have manifolds of solutions. A new framework is proposed in this paper to extend the advantages of the interval Newton to under-constrained systems of equations. This is done simply by permitting domains of CSPs to be parallelepipeds instead of the usual boxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tupper, J.: Reliable two-dimensional graphing methods for mathematical formulae with two free variables. In: SIGGRAPH 2001, pp. 77–86. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Kearfott, R.B., Xing, Z.: An Interval Step Control for Continuation Methods. SIAM J. Numer. Anal. 31(3), 892–914 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hansen, E.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, NY (1992)

    MATH  Google Scholar 

  4. Merlet, J.: Parallel robots. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  5. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint Satisfaction Techniques. ACM Trans. Math. Soft. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  7. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge U. P, Cambridge (1990)

    Google Scholar 

  8. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Neumaier, A.: Overestimation in linear interval equations. SIAM J. Numer. Anal. 24(1), 207–214 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldsztejn, A.: A Right-Preconditioning Process for the Formal-Algebraic Approach to Inner and Outer Estimation of AE-solution Sets. Reliab. Comp. 11(6), 443–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to Initial Value Problems with Uncertain Initial Value. In: Proc. of SCAN 2006 (2006)

    Google Scholar 

  12. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  13. Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Benhamou, F., McAllister, D., Hentenryck, P.V.: CLP(Intervals) Revisited. In: International Symposium on Logic Programming, pp. 124–138 (1994)

    Google Scholar 

  15. Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliab. Comp. 1, 1–16 (1999)

    Google Scholar 

  16. Goldsztejn, A.: A Branch and Prune Algorithm for the Approximation of Non-Linear AE-Solution Sets. In: Proc. of ACM SAC 2006, pp. 1650–1654 (2006)

    Google Scholar 

  17. Moré, J., Garbow, B., Hillstrom, K.: Testing unconstrained optimization software. ACM Trans. Math. Software 7(1), 136–140 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsztejn, A., Granvilliers, L. (2008). A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics