This work is devoted to drawing conclusions based on a set of possibly inconsistent data. Particular attention is paid to distinguishing applications of inappropriate methods from inability to solve a problem combining several methods. Intermediate truth values are used to facilitate the process of comparing degrees of certainties among contexts. Three-level nested lattices are used to facilitate the process of distinguishing all possible outcomes of tests with pre-determined number of questions and pre-determined number of answer alternatives following each question.


Decision support services uncertainty management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal Logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (2005)Google Scholar
  3. 3.
    Ferreira, U.: Uncertainty and a 7-Valued Logic. In: Dey, P.P., Amin, M.N., Gatton, T.M. (eds.) The 2nd International Conference on Computer Science and its Applications, National University, San Diego, CA, pp. 170–173 (2004)Google Scholar
  4. 4.
    Fitting, M.: Kleene’s Logic. Generalized. J. Log. Comp. 1(6), 797–810 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fitting, M.: Kleene’s three-valued logics and their children. Fundamenta Informaticae 20, 113–131 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Fitting, M.: Tableaus for many-valued modal logic. Studia Logica 55, 63–87 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garcia, O.N., Moussavi, M.: A Six-Valued Logic for Representing Incomplete Knowledge. In: The 20th International Symposium on Multiple-Valued Logic, pp. 110–114. IEEE Computer Society Press, Charlotte (1990)Google Scholar
  8. 8.
    Garcia-Duque, J., Lopez-Nores, M., Pazos-Arias, J., Fernandez-Vilas, A., Diaz-Redondo, R., Gil-Solla, A., Blanco-Fernandez, Y., Ramos-Cabrer, M.: A Six-valued Logic to Reason about Uncertainty and Inconsistency in Requirements Specifications. J. Log. Comp. 16(2), 227–255 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hahnle, R., Werner Kernig, W.: Verification of Switch-level designs with many-valued logic. LNCS, vol. 698, pp. 158–169. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Apache HTTP Server Project,
  11. 11.
    Python Programming Language,
  12. 12.
  13. 13.
    Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The boundery between decidability and undecidability of transitive closure logics. In: CSL 2004 (2004)Google Scholar
  14. 14.
    Kim, M., Maida, A.S.: Reliability measure theory: a nonmonotonic semantics. IEEE Tr. on K. and D. Eng. 5(1), 41–51Google Scholar
  15. 15.
    Kleene, S.: Introduction to Metamathematics. D. Van Nostrand Co., Inc., New York (1952)zbMATHGoogle Scholar
  16. 16.
    Lukasiewicz, J.: On Three-Valued Logic. Ruch Filozoficzny, 5 (1920). In: Borkowski, L. (ed.) 1970. Jan Lukasiewicz: Selected Works, North Holland, Amsterdam (1920)Google Scholar
  17. 17.
    Moussavi, M., Garcia, O.N.: A Six-Valued Logic and its application to artificial intelligence. In: The Fifth Southeastern Logic Symposium (1989)Google Scholar
  18. 18.
    Takashima, M., Mitsuhashi, T., Chiba, T., Yoshida, K.: Programs for Verifying Circuit Connectivity of MOS/LSI Mask Artwork. In: 19th Conference on Design Automation, pp. 544–550. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar
  19. 19.
    Wille, R.: Concept lattices and conceptual knowledge systems. Comp. Math. Appl. 23(6-9), 493–515 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sylvia Encheva
    • 1
  • Sharil Tumin
    • 2
  1. 1.Stord/Haugesund University CollegeHaugesundNorway
  2. 2.IT-Dept.University of BergenBergenNorway

Personalised recommendations